H-infinity Papers
Theory
- B. Hassibi and T. Kailath,
A Krein space interpretation of the Kalman-Yakubovich-Popov lemma,
submitted to Systems and Control Letters.
- B. Hassibi, T. Kailath and A.H. Sayed,
Array algorithms for H-infinity estimation,
IEEE Transactions on Automatic Control, vol. 45, no. 4, April 2000,
pages 702-706.
- B. Hassibi and T. Kailath,
On optimal solutions to two-block H-infinity problems,
Proceedings of the 1998 American Control Conference, Philadelphia, PA, 1998, pages 1979-99.
- B. Hassibi, T. Kailath and A.H. Sayed,
Array algorithms for H-2 and H-infinity estimation,
to appear in Applied and Computational Control, Signals and
Circuits, 1997.
- B. Hassibi and T. Kailath,
Tracking with an H-infinity criterion,
Proceedings of the 37th IEEE Conference on Decision
and Control, San Diego CA, Dec 1997, pages 3594-99.
- B. Hassibi, A.H. Sayed and T. Kailath,
Linear estimation in Krein spaces - part I: Theory,
IEEE Transactions on Automatic Control, vol. 41, no. 1,
pp. 18-33, Jan. 1996.
- B. Hassibi, A.H. Sayed and T. Kailath,
Linear estimation in Krein spaces - part II: Applications,
IEEE Transactions on Automatic Control, vol. 41, no. 1,
pp. 34-49, Jan. 1996.
- B. Hassibi, A.H. Sayed and T. Kailath,
Square-root arrays and Chandrasekhar recursions for H-infinity problems,
Proceedings of the 33rd IEEE Conference on Decision and
Control, pp. 2237-2243, Orlando, FL, Dec 1994.
- B. Hassibi, A.H. Sayed and T. Kailath,
H-infinity filtering as Kalman filtering in Krein space,
Proceedings of the Rockwell Symposium, Feb 1994, Anaheim, CA.
- B. Hassibi, A.H. Sayed and T. Kailath,
Recursive linear estimation in Krein spaces with applications to H-infinity
problems,
Systems and Networks: Mathematical Theory and
Applications, Vol. 2, U. Helmke, R. Mennicken and J. Saurer, Eds.,
pp. 703-707, Akademie Verlag, 1994.
- T. Kailath, B. Hassibi and A. H. Sayed,
H-infinity filtering is just Kalman filtering in Krein space,
in Computing and Intelligent Systems, eds. S. Keerthi,
Y. Narahari and N. Viswanadham, Tata McGraw-Hill Publishing Co. Ltd.,
pp. 7-15, New Delhi, 1993.
- B. Hassibi, A.H. Sayed and T. Kailath,
Recursive linear estimation in Krein spaces - part II: Applications,
Proceedings of the 32nd IEEE Conference on Decision and Control,
pp.3495-3501, San Antonio, TX, Dec 1993.
- B. Hassibi, A.H. Sayed and T. Kailath,
Recursive linear estimation in Krein spaces - part I: Theory,
Proceedings of the 32nd IEEE Conference on Decision and Control,
pp.3489-3495, San Antonio, TX, Dec 1993.
Mixed H-2/H-infinity
- B. Hassibi and T. Kailath,
H-infinity bounds for least-squares estimators,
IEEE Transactions on Automatic Control, vol.46, no.2, Feb. 2001, pages 309-14.
- H. Vikalo, B. Hassibi and T. Kailath,
Mixed H-2/H-infinity optimal signal reconstruction in noisy filter banks,
Proceedings of the 2000 IEEE International Conference on Acoustics, Speech and Signal Processing, pages 500-503.
- B. Hassibi and T. Kailath,
On robust two-block problems,
Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, FL, 1998, pages 2209-10.
- B. Hassibi and T. Kailath,
Upper bounds for mixed H-2/H-infinity control,
Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, FL, 1998, pages 652-57.
- B. Hassibi and T. Kailath,
H-infinity-optimality of H-2 predictors,
Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, FL, 1998, pages 626-631.
- H. Hindi, B. Hassibi and S.P. Boyd,
Multi-objective H-2/H-infinity-optimal control via finite-dimensional Q-parametrization and linear matrix inequalities,
Proceedings of the 1998 American Control Conference, Philadelphia, PA, 1998, pages 3244-49.
- B. Halder, B. Hassibi and T. Kailath,
Design of optimal mixed H-2/H-infinity static state feedback controllers,
Proceedings of the 1998 American Control Conference, Philadelphia, PA, 1998, pages 3239-43.
- B. Hassibi and T. Kailath,
On adaptive filtering with combined least-mean-squares and H-infinity criteria,
Proceedings of the 31st Asilomar Conference on Signals,
Systems and Computers Pacific Grove, CA, Nov 1997, pages 1570-74.
- B. Halder, B. Hassibi and T. Kailath,
Linearly combined mixed H-2/H-infinity controllers,
Proceedings of the 37th IEEE Conference on Decision
and Control, San Diego CA, Dec 1997, pages 434-439.
- B. Hassibi and T. Kailath,
On nonlinear filters for mixed H-2/H-infinity estimation,
Proceedings of the 1997 American Control Conference, Albuquerque, NM,
June 1997.
- B. Halder, B. Hassibi and T. Kailath,
State-space structure of finite-horizon mixed H-2/H-infinity filters,
Proceedings of the 1997 American Control Conference, Albuquerque, NM,
June 1997.
- B. Hassibi and T. Kailath,
Mixed least-mean-squares/H-infinity-optimal adaptive filtering,
Proceedings of the 30th Asilomar Conference on Signals, Systems and
Computers, Pacific Grove, CA, Nov 1996.
- B. Halder, B. Hassibi and T. Kailath,
Mixed H-2/H-infinity estimation: Preliminary analytic characterization
and a numerical solution,
Proceedings of the 1996 IFAC World
Congress, vol. J, pp. 37-42, San Francisco, CA, Jun 1996.
- B. Hassibi and T. Kailath,
H-infinity bounds for the recursive-least-squares algorithm,
Proceedings of the 33rd IEEE Conference on Decision and Control,
pp. 3927-3929, Orlando, FL, Dec 1994.
Applications
- B. Hassibi, A.T. Erdogan and T. Kailath,
MIMO linear equalization with an
H-infinity criterion,
IEEE Transactions on Signal Processing, vol 54, no 9, pages
499-511, Feb 2006.
- H. Vikalo, B. Hassibi, A.T. Erdogan and T. Kailath,
On H-infinity design techniques for robust
signal reconstruction in noisy filter banks,
EURASIP Signal Processing, vol 85, no 1, pages 1-14, Jan 2005.
- A.T. Erdogan, B. Hassibi and T. Kailath,
MIMO Decision Feedback Equalization from an
H-infinity perspective
IEEE Transactions on Signal Processing, vol 52, no 3, pages
734-745, March 2004.
- A.T. Erdogan, B. Hassibi and T. Kailath,
FIR H-infinity equalization of communication channels,
Signal Processing, vol.81, no.5, May. 2001, pages 907-17.
- A.T. Erdogan, B. Hassibi and T. Kailath,
On linear H-infinity equalization of communication channels,
IEEE Transactions on Signal Processing, vol.48, no.11, Nov. 2000, pages 3227-31.
- B. Sayyarrodsari, J.P. How, B. Hassibi and A. Carrier,
Estimation-based synthesis of H-infinity-optimal adaptive FIR filters for filtered-LMS problems.
IEEE Transactions on Signal Processing, vol.49, no.1, Jan. 2001, pages 164-78.
- H. Vikalo, A.T. Erdogan, B. Hassibi and T. Kailath,
Exponential-quadratic optimal signal reconstruction in noisy filter
banks,
SPIE-Int. Soc. Opt. Eng. Proceedings of Spie - the International Society for Optical Engineering,, 2000, pages 1020-28.
- H. Vikalo, B. Hassibi and T. Kailath,
On robust multiuser detection,
Conference Record of the
Thirty-Fourth Asilomar Conference on Signals, Systems and Computers
, 2000, pages 1168-72.
- B. Hassibi, A.T. Erdogan and T. Kailath,
Equalization with an H-infinity criterion,
submitted to IEEE Transactions on Information Theory.
- B. Sayyarrodsari, J.P. How, B. Hassibi and A. Carrier,
Estimation-based multi-channel adaptive algorithm for filtered-LMS
problems,
Proceedings of the 2000 American Control Conference, pages 3192-97.
- A.T. Erdogan, B. Hassibi and T. Kailath,
On linear H-infinity equalization of communication channels,
Proceedings of the 2000 IEEE International Conference on Acoustics, Speech and Signal Processing, pages 2729-32.
- A.T. Erdogan, B. Hassibi and T. Kailath,
Decision feedback equalization from an H-infinity perspective,
Proceedings of the IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, 1999, Istanbul, Turkey, pages 689-93.
- H. Vikalo, B. Hassibi and T. Kailath,
On H-infinity-optimal signal reconstruction in noisy filter banks,
Proceedings of the 1999 IEEE International Conference on Acoustics, Speech and Signal Processing, pages 1493-96.
- B. Sayyarrodsari, J. How, B. Hassibi and A. Carrier,
An LMI formulation of the estimation-based approach to the design of adaptive filters,
Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, FL, 1998, pages 158-60.
- B. Hassibi, A.T. Erdogan and T. Kailath,
Equalization with an H-infinity criterion,
Proceedings of the 1998 IEEE International Conference on Information Theory, Boston, pages 449.
- A.T. Erdogan, B. Hassibi and T. Kailath,
H-infinity equalization of communication channels,
Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, pages 3489-92.
- B. Sayyarrodsari, B. Hassibi and J. How,
An H-infinity-optimal alternative to the FxLMS algorithm,
Proceedings of the 1998 American Control Conference, Philadelphia, PA, 1998, pages 1116-21.
- B. Sayyarrodsari, B. Hassibi, J. How and A. Carrier,
An estimation-based approach to the design of adaptive IIR filters,
Proceedings of the 1998 American Control Conference, Philadelphia, PA, 1998, pages 3148-52.
- B. Hassibi, A.H. Sayed and T. Kailath,
H-infinity optimality of the LMS algorithm,
IEEE Transactions on Signal Processing, vol. 44, no. 2,
Feb. 1996.
- B. Hassibi and T.Kailath,
H-infinity optimal training algorithms
and their relation to backpropagation,
in Advances in Neural Information Processing Systems, Vol 7,
G. Tesauro, D.S. Touretzky and T.K. Leen, Eds., pp. 191-199, MIT-Press,
Apr 1995.
- B. Hassibi, A.H. Sayed and T. Kailath,
LMS is H-infinity optimal,
in Adaptive Control, Filtering and Signal Processing,
K.J. Astrom, G.C. Goodwin and P.R. Kumar Eds., pp. 65-89,
Springer-Verlag, 1995.
- B. Hassibi and T. Kailath,
H-infinity adaptive filtering,
Proceeding of the 1995 IEEE International Conference on
Acoustics, Speech and Signal Processing, pp. 949-952, Detroit, MI,
May 1995.
- B. Hassibi, A.H. Sayed and T. Kailath,
H-infinity optimality criteria for LMS and backpropagation,
in Advances in Neural Information Processing Systems, Vol 6,
J.D. Cowan, G. Tesauro and J. Alspector, Eds., pp. 351-359,
Morgan-Kaufmann, Apr 1994.
- B. Hassibi, A.H. Sayed and T. Kailath,
LMS and backpropagation are minimax filters,
in Theoretical Advances in Neural Computation and Learning,
V. Roychowdhury, K.Y.
Siu, and A. Orlitsky, Eds., pp. 424-449, Kluwer 1994.
- B. Hassibi and T. Kailath,
Adaptive filtering with an H-infinity criterion,
Proceedings of 28th Asilomar Conference on Signals,
Systems and Computers, Pacific Grove, CA, Nov 1994.
- B. Hassibi, A.H. Sayed and T. Kailath,
LMS is H-infinity optimal,
Proceedings of the 32nd IEEE Conference on Decision and Control,
pp.74-80, San Antonio, TX, Dec 1993.