H-infinity Papers

Theory

  1. B. Hassibi and T. Kailath, A Krein space interpretation of the Kalman-Yakubovich-Popov lemma, submitted to Systems and Control Letters.

  2. B. Hassibi, T. Kailath and A.H. Sayed, Array algorithms for H-infinity estimation, IEEE Transactions on Automatic Control, vol. 45, no. 4, April 2000, pages 702-706.

  3. B. Hassibi and T. Kailath, On optimal solutions to two-block H-infinity problems, Proceedings of the 1998 American Control Conference, Philadelphia, PA, 1998, pages 1979-99.

  4. B. Hassibi, T. Kailath and A.H. Sayed, Array algorithms for H-2 and H-infinity estimation, to appear in Applied and Computational Control, Signals and Circuits, 1997.

  5. B. Hassibi and T. Kailath, Tracking with an H-infinity criterion, Proceedings of the 37th IEEE Conference on Decision and Control, San Diego CA, Dec 1997, pages 3594-99.

  6. B. Hassibi, A.H. Sayed and T. Kailath, Linear estimation in Krein spaces - part I: Theory, IEEE Transactions on Automatic Control, vol. 41, no. 1, pp. 18-33, Jan. 1996.

  7. B. Hassibi, A.H. Sayed and T. Kailath, Linear estimation in Krein spaces - part II: Applications, IEEE Transactions on Automatic Control, vol. 41, no. 1, pp. 34-49, Jan. 1996.

  8. B. Hassibi, A.H. Sayed and T. Kailath, Square-root arrays and Chandrasekhar recursions for H-infinity problems, Proceedings of the 33rd IEEE Conference on Decision and Control, pp. 2237-2243, Orlando, FL, Dec 1994.

  9. B. Hassibi, A.H. Sayed and T. Kailath, H-infinity filtering as Kalman filtering in Krein space, Proceedings of the Rockwell Symposium, Feb 1994, Anaheim, CA.

  10. B. Hassibi, A.H. Sayed and T. Kailath, Recursive linear estimation in Krein spaces with applications to H-infinity problems, Systems and Networks: Mathematical Theory and Applications, Vol. 2, U. Helmke, R. Mennicken and J. Saurer, Eds., pp. 703-707, Akademie Verlag, 1994.

  11. T. Kailath, B. Hassibi and A. H. Sayed, H-infinity filtering is just Kalman filtering in Krein space, in Computing and Intelligent Systems, eds. S. Keerthi, Y. Narahari and N. Viswanadham, Tata McGraw-Hill Publishing Co. Ltd., pp. 7-15, New Delhi, 1993.

  12. B. Hassibi, A.H. Sayed and T. Kailath, Recursive linear estimation in Krein spaces - part II: Applications, Proceedings of the 32nd IEEE Conference on Decision and Control, pp.3495-3501, San Antonio, TX, Dec 1993.

  13. B. Hassibi, A.H. Sayed and T. Kailath, Recursive linear estimation in Krein spaces - part I: Theory, Proceedings of the 32nd IEEE Conference on Decision and Control, pp.3489-3495, San Antonio, TX, Dec 1993.

Mixed H-2/H-infinity

  1. B. Hassibi and T. Kailath, H-infinity bounds for least-squares estimators, IEEE Transactions on Automatic Control, vol.46, no.2, Feb. 2001, pages 309-14.

  2. H. Vikalo, B. Hassibi and T. Kailath, Mixed H-2/H-infinity optimal signal reconstruction in noisy filter banks, Proceedings of the 2000 IEEE International Conference on Acoustics, Speech and Signal Processing, pages 500-503.

  3. B. Hassibi and T. Kailath, On robust two-block problems, Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, FL, 1998, pages 2209-10.

  4. B. Hassibi and T. Kailath, Upper bounds for mixed H-2/H-infinity control, Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, FL, 1998, pages 652-57.

  5. B. Hassibi and T. Kailath, H-infinity-optimality of H-2 predictors, Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, FL, 1998, pages 626-631.

  6. H. Hindi, B. Hassibi and S.P. Boyd, Multi-objective H-2/H-infinity-optimal control via finite-dimensional Q-parametrization and linear matrix inequalities, Proceedings of the 1998 American Control Conference, Philadelphia, PA, 1998, pages 3244-49.

  7. B. Halder, B. Hassibi and T. Kailath, Design of optimal mixed H-2/H-infinity static state feedback controllers, Proceedings of the 1998 American Control Conference, Philadelphia, PA, 1998, pages 3239-43.

  8. B. Hassibi and T. Kailath, On adaptive filtering with combined least-mean-squares and H-infinity criteria, Proceedings of the 31st Asilomar Conference on Signals, Systems and Computers Pacific Grove, CA, Nov 1997, pages 1570-74.

  9. B. Halder, B. Hassibi and T. Kailath, Linearly combined mixed H-2/H-infinity controllers, Proceedings of the 37th IEEE Conference on Decision and Control, San Diego CA, Dec 1997, pages 434-439.

  10. B. Hassibi and T. Kailath, On nonlinear filters for mixed H-2/H-infinity estimation, Proceedings of the 1997 American Control Conference, Albuquerque, NM, June 1997.

  11. B. Halder, B. Hassibi and T. Kailath, State-space structure of finite-horizon mixed H-2/H-infinity filters, Proceedings of the 1997 American Control Conference, Albuquerque, NM, June 1997.

  12. B. Hassibi and T. Kailath, Mixed least-mean-squares/H-infinity-optimal adaptive filtering, Proceedings of the 30th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, Nov 1996.

  13. B. Halder, B. Hassibi and T. Kailath, Mixed H-2/H-infinity estimation: Preliminary analytic characterization and a numerical solution, Proceedings of the 1996 IFAC World Congress, vol. J, pp. 37-42, San Francisco, CA, Jun 1996.

  14. B. Hassibi and T. Kailath, H-infinity bounds for the recursive-least-squares algorithm, Proceedings of the 33rd IEEE Conference on Decision and Control, pp. 3927-3929, Orlando, FL, Dec 1994.

Applications

  1. B. Hassibi, A.T. Erdogan and T. Kailath, MIMO linear equalization with an H-infinity criterion, IEEE Transactions on Signal Processing, vol 54, no 9, pages 499-511, Feb 2006.

  2. H. Vikalo, B. Hassibi, A.T. Erdogan and T. Kailath, On H-infinity design techniques for robust signal reconstruction in noisy filter banks, EURASIP Signal Processing, vol 85, no 1, pages 1-14, Jan 2005.

  3. A.T. Erdogan, B. Hassibi and T. Kailath, MIMO Decision Feedback Equalization from an H-infinity perspective IEEE Transactions on Signal Processing, vol 52, no 3, pages 734-745, March 2004.

  4. A.T. Erdogan, B. Hassibi and T. Kailath, FIR H-infinity equalization of communication channels, Signal Processing, vol.81, no.5, May. 2001, pages 907-17.

  5. A.T. Erdogan, B. Hassibi and T. Kailath, On linear H-infinity equalization of communication channels, IEEE Transactions on Signal Processing, vol.48, no.11, Nov. 2000, pages 3227-31.

  6. B. Sayyarrodsari, J.P. How, B. Hassibi and A. Carrier, Estimation-based synthesis of H-infinity-optimal adaptive FIR filters for filtered-LMS problems. IEEE Transactions on Signal Processing, vol.49, no.1, Jan. 2001, pages 164-78.

  7. H. Vikalo, A.T. Erdogan, B. Hassibi and T. Kailath, Exponential-quadratic optimal signal reconstruction in noisy filter banks, SPIE-Int. Soc. Opt. Eng. Proceedings of Spie - the International Society for Optical Engineering,, 2000, pages 1020-28.

  8. H. Vikalo, B. Hassibi and T. Kailath, On robust multiuser detection, Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers , 2000, pages 1168-72.

  9. B. Hassibi, A.T. Erdogan and T. Kailath, Equalization with an H-infinity criterion, submitted to IEEE Transactions on Information Theory.

  10. B. Sayyarrodsari, J.P. How, B. Hassibi and A. Carrier, Estimation-based multi-channel adaptive algorithm for filtered-LMS problems, Proceedings of the 2000 American Control Conference, pages 3192-97.

  11. A.T. Erdogan, B. Hassibi and T. Kailath, On linear H-infinity equalization of communication channels, Proceedings of the 2000 IEEE International Conference on Acoustics, Speech and Signal Processing, pages 2729-32.

  12. A.T. Erdogan, B. Hassibi and T. Kailath, Decision feedback equalization from an H-infinity perspective, Proceedings of the IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, 1999, Istanbul, Turkey, pages 689-93.

  13. H. Vikalo, B. Hassibi and T. Kailath, On H-infinity-optimal signal reconstruction in noisy filter banks, Proceedings of the 1999 IEEE International Conference on Acoustics, Speech and Signal Processing, pages 1493-96.

  14. B. Sayyarrodsari, J. How, B. Hassibi and A. Carrier, An LMI formulation of the estimation-based approach to the design of adaptive filters, Proceedings of the 37th IEEE Conference on Decision and Control, Tampa, FL, 1998, pages 158-60.

  15. B. Hassibi, A.T. Erdogan and T. Kailath, Equalization with an H-infinity criterion, Proceedings of the 1998 IEEE International Conference on Information Theory, Boston, pages 449.

  16. A.T. Erdogan, B. Hassibi and T. Kailath, H-infinity equalization of communication channels, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, pages 3489-92.

  17. B. Sayyarrodsari, B. Hassibi and J. How, An H-infinity-optimal alternative to the FxLMS algorithm, Proceedings of the 1998 American Control Conference, Philadelphia, PA, 1998, pages 1116-21.

  18. B. Sayyarrodsari, B. Hassibi, J. How and A. Carrier, An estimation-based approach to the design of adaptive IIR filters, Proceedings of the 1998 American Control Conference, Philadelphia, PA, 1998, pages 3148-52.

  19. B. Hassibi, A.H. Sayed and T. Kailath, H-infinity optimality of the LMS algorithm, IEEE Transactions on Signal Processing, vol. 44, no. 2, Feb. 1996.

  20. B. Hassibi and T.Kailath, H-infinity optimal training algorithms and their relation to backpropagation, in Advances in Neural Information Processing Systems, Vol 7, G. Tesauro, D.S. Touretzky and T.K. Leen, Eds., pp. 191-199, MIT-Press, Apr 1995.

  21. B. Hassibi, A.H. Sayed and T. Kailath, LMS is H-infinity optimal, in Adaptive Control, Filtering and Signal Processing, K.J. Astrom, G.C. Goodwin and P.R. Kumar Eds., pp. 65-89, Springer-Verlag, 1995.

  22. B. Hassibi and T. Kailath, H-infinity adaptive filtering, Proceeding of the 1995 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 949-952, Detroit, MI, May 1995.

  23. B. Hassibi, A.H. Sayed and T. Kailath, H-infinity optimality criteria for LMS and backpropagation, in Advances in Neural Information Processing Systems, Vol 6, J.D. Cowan, G. Tesauro and J. Alspector, Eds., pp. 351-359, Morgan-Kaufmann, Apr 1994.

  24. B. Hassibi, A.H. Sayed and T. Kailath, LMS and backpropagation are minimax filters, in Theoretical Advances in Neural Computation and Learning, V. Roychowdhury, K.Y. Siu, and A. Orlitsky, Eds., pp. 424-449, Kluwer 1994.

  25. B. Hassibi and T. Kailath, Adaptive filtering with an H-infinity criterion, Proceedings of 28th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, Nov 1994.

  26. B. Hassibi, A.H. Sayed and T. Kailath, LMS is H-infinity optimal, Proceedings of the 32nd IEEE Conference on Decision and Control, pp.74-80, San Antonio, TX, Dec 1993.