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Abstract

Given past observations of a process, {y;,j < i}, sup-
pose we are interested in constructing one-step-ahead
predictors of y;, denoted by ;;,_,. We show that, ir-
respective of whether the process {y;} is stationary or
non-stationary, or whether it is scalar- or vector-valued,
the H2-optimal one-step-ahead predictor is also H>-
optimal. Since the H? and H® paradigms represent
fundamentally different approaches to estimation and
control, the estimators and controllers obtained from
each formalism have often drastically different perfor-
mances with respect to the other criterion. Our result,
however, provides a non-trivial example of when the
two formalisms lead to the same optimal design.

1 Introduction

The H? and H® paradigms in estimation and con-
trol represent two extremes, both in terms of their re-
quirements on the exogenous signals, and in terms of
their objec:ives: one is stochastic, assumes statistical
knowledge of the exogenous signals, and optimizes av-
erage performance, whereas the other is deterministic,
makes no statistical assumptions on the signals, and
optimizes the worst-case performance. For this rea-
son, the estimators and controllers obtained from these
two formalisms have often drastically different perfor-
mances when measured with respect to the other cri-
terion. This is especially true in control, where H*
theory was first developed to address the question of
robustness, which could not be satisfactorily dealt with
in the H? framework [1, 2], and, for example, in adap-
tive filtering, where the H2- and H*-optimal solutions
(RLS and LMS) are quite different [3].

Consider now the following one-step-ahead prediction
problem: given the possibly vector-valued process {y;},
construct estimates of y;, using past observations of the
process {y;,j < i}, which we denote by §;);—1.
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The H? Case: Here we assume that the second-order
statistics of {y;} are known. The mean-values can,
without loss of generality, be taken to be zero, which
means that in the stationary case, we know the covari-
ance function Ry(i) = Ey;y;_;, or, equivalently, we
know the z-spectral density

Sy(z) =Z {Ry(i)} = Z Ry(j)z_j,

and that, in the nonstationary case, we know the two-
dimensional covariance function

Ry(i,j) = Eyiyj.

In either case, the H? criterion requires us to minimize
the mean-square prediction error:

1)

Now it is wellknown that H2-optimal predictors result
in a white prediction error process known as the inno-
vations process, e; = y; — J;);—1 (see e.g., [4]). Thus, in
the stationary case,

E(yi = §ijiz1)" (¥ = Giji-1)-

Eeje;_; = Re(i) = Red; or Se(z)=R.
and, in the nonstationary case,

Eeie; — Re(i,j) = Re’iéi]‘.

The H>® Case: Here we assume that the process {y;}
is generated by passing an unknown input sequence
{u;} through a known causal linear system. In the sta-
tionary case, the known linear system is time-invariant,
and can be represented by its transfer matrix, H(z).
In the nonstationary case, the known linear system is
time-variant .In either case, the objective in the H*®
approach is to minimize the worst-case energy gain
from the unknown sequence {u;} to the prediction er-
ror sequence {y; — Jj)j—1}» i-€., to minimize

lly — 9113
llll3

(2)

{u;}erz—{0}

2 oo * 2
where ||a|| 2 i~ —oo @jaj, and [* denotes the space
of square-summable sequences.



The maximum energy gain in (2) can be regarded as the
(squared) I2-induced norm (or the (squared) H® norm)
of the transfer operator, T, that maps the unknown in-
put {u;} to the prediction error sequence {y; —;jj-1}-
In the time-invariant case, Tx has a transfer matrix
representation, Tk (z), and

lly — 9113
(Jull3

whereas in the time-invariant case Tx can be repre-
sented by a (block) lower triangular matrix, and

sup

= sup & (Tk(e™)Tx(e™)),
{uj}etiz—{0}

wel0,2n]

lly — 3ll3
(|13

where &(-) represents the maximum singular value.

=a (TxTx),
{u;}ye12-{0}

The H? and H™ approaches can be related in the fol-
lowing fashion: rather than assuming that the the pro-
cess {y;} is a zero-mean stochastic process with known
covariance function, we can equivalently assume that
{y;} is generated by passing an unknown zero-mean
unit variance process {u;} through a known causal lin-
ear system. In this framework the known covariance
function of {y;} is determined by the linear system that
generates {y;} from {u;}. The mean-square-error (1),
in the stationary case, is then given by

2
— trace [Tk (e’*) Ty (¢’)] dw,
27 Jo

and, in the (finite-horizon) non-stationary case,

E

N
D (i = Gaji-1) (yi — ﬁili—l)] = trace (TkTx) -
i=0

The fact that H?-optimal one-step predictors result in
white prediction errors, means that the resulting H?-
optimal transfer operator Ti,T¢, is (block) diagonal.
Thus, in the stationary case,

Tx,(e/*)Tk,(€) = Re,
and in the (finite-horizon) non-stationary case,
TIC2TIEQ = Re,O &b Re,l &b...8 Re,N-

This, of course, implies that, in the stationary case, the
(squared) H* norm of the H2-optimal predictor is

sup & (Tk,(e)Ti,(e’)) =5 (Re),
w€[0,2n]

since the error-spectrum T, (€7 )Ty (/) is frequency
independent, and in the non-stationary case,

o (7}:27—)6*2) = i=r{)l?:).(N6 (Re.i) »

since the error covariance Tk, T¢, is (block) diagonal.
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Scalar Stationary Processes: When {y;} is
a scalar stationary process, the error spectrum
Tk,(e?)Ty (e7*) = R, is flat, since R, is a scalar.
Further reflection on this fact shows that the H2-
optimal predictor for a scalar stationary process must
also be H*-optimal. To this end, suppose that it is not
H®-optimal. Then there exists a predictor for which
sup Tk (e’)Tx(e’) < R,.
we[0,27]

But this clearly violates the H2-optimality, since

2w

T ()T (e7)dw <

27

Redw

0

27
| Tl (7)o
0

[More intuitively, in the scalar case H*-optimal predic-
tors minimize the peak value of | T (e7)|?, whereas H2-
optimal predictors minimize the area under the curve
of |Tk(e?*)|?. Clearly, if |Tk,(e?)|? is flat it is not
possible to reduce its peak without further reducing its
area under the curve.]

Vector-Valued and Nonstationary Processes:
Unfortunately, the above simple argument cannot
be extended to such processes. In the vector-
valued case, since R, is a matrix, rather than a
scalar, it is not clear whether it possible to reduce
Sup,epo,2n & (Tk (€*)) beyond G(R), without hav-

ing to reduce #foh trace [Tx (e’“) Ty (e7)] dw be-
yond 2 f02" trace [R.] dw.

In the non-stationary case the situation is even more
confounded, since we must check whether it is possible
to reduce & (Tx T¢) beyond maxi—o,...n & (Re,;) without
having to reduce trace (Tx ;) beyond Zi\;o trace[Re,i].

Thus the question of whether the H-optimality of H?
predictors extends to such more general processes still
remains. In the next sections we shall answer this ques-
tion in the affirmative. However, to do so, we will need
to delve more deeply into H™ theory, and especially
into the structure of H*-optimal solutions {5, 6, 7].

2 The Stationary Case

A general estimation problem, in the stationary case,
is shown in Fig. 2, where {u; € C™} is an unknown
input sequence, {v; € CP} is an unknown additive dis-
turbance sequence, {y; € CP} is a known measurement
sequence, and H(z) and L(z) are known causal and
stable linear time-invariant systems. The goal is to
construct the linear time-invariant K (z) (called the es-
timator) to estimate the unobservable desired sequence
{s; € C9} from the observations {y;}. The estimates
are denoted by {3;}.



Figure 1: A stationary estimation problem.

The behavior of any estimator K(z) can be captured by
the induced transfer matrix, say Tk (z), that maps the
unknown disturbances {u;} and {R~'/?v;}, where R =
RY2R*/? > 0 is a weighting matrix, to the estimation
errors {s; — §;}. Now using Fig. 2, we readily see

Tk(2) = [ L(z) - K(2)H(z) —K(z)R'/?].

In H® estimation the goal is to choose K (z) to mini-
mize the H> norm of Tk(z).

Problem 1 (Optimal H* Estimation Problem)
Find a causal estimator K(z) that achieves

. A
Il(f(lf) ”TK(Z)”oo = Yopt - (3)

To give an expression for 7,,; we need to introduce
some notation. To this end, note that the causal and
stable H(z) and L(z) have the following Laurent series
expansions, analytic on and outside the unit circle:

(o] o0
H(z) = Zsz_j and L(z2) = Z Liz ™.
j=0 j=0
Now the input-output mappings
oo oo
0; = ZHjui_j and $; = ELju,’_j
j=0 j=0

can be written in matrix notation as

0_1 HO U—1
% = H] Ho Uo ’
01 ... Hy H; H, u1

S—— & -~ [P —
4 u

2y

with a similar expression s = Lu. If we further parti-
tion the input and output sequences {u;} and {o,} into

the their past, u_ a {ui,i < 0} and o_ = {yi,i < 0},
and present and future, uy = {ui,i > 0} and oy 2
{yi,1 > 0}, components, the operator H is also parti-
tioned as follows:

-]

where, for example,

e

H_ Hp
H, H,
H, H, Hp

Similarly, also for £:

£_ 1 0
ﬁ_{ Cu | Ly ]

The operators H_ and £_ map past inputs to past
outputs, and are called Toeplitz operators, whereas the
original doubly-infinite operators H and £ are referred
to as Laurent operators.

With these definitions, we have the following result.

Theorem 1 (Optimal H* Norm) The optimal
H® norm for Problem 1 is given by
Vo = F(L_(I+HRI'H_)™'LY) (4)

= G(L_LX —L_H(R_+H_HI)'H_LY),

where we have defined R_ =...® Rd R.

Proof: For a proof, see [7, §].
|

Note that formula (4) gives an expression for vy,p in
terms of the maximum singular value (or maximum
spectral radius) of a certain combination of the Toeplitz
operators, H_ and £_. However, it can be shown that
the operator £L_(I + H*RZ'H_)"'L* is not in gen-
eral Toeplitz, so that, except for some special cases,
explicit frequency domain formulae for ., cannot be
found. However, expression (4) will indeed allow us to
demonstrate that H? predictors are H*-optimal.

Finally, we should remark that the second of the two
formulae in (4) does not require the invertibility of R,
and so will be the main formula used in our proof.

2.1 One-Step-Ahead Prediction

The one-step-ahead prediction problem, in the station-
ary case, is depicted in Fig. 2.1. Here H(z) isap x m
causal and stable transfer matrix that generates the



process {y;}. The transfer matrix z=! H(2) clearly gen-
erates {y;—1}. Thus the prediction problem becomes a
special case of the estimation problem (3) with

L(z) » H(z) , H(z)> z 'H(2)

and with R = 0, since there is no additive disturbance
{v;} and so no penalty on the second block of Tk (2).

U;

—>

2z 1H(2) > K(2)

H(z) —"

Figure 2: The stationary prediction problem.

Thus in the operator domain:
L_—H_ and H_- - 2 H-

where Z, is the block lower triangular shift matrix,

z,28 0
I, 0
0 I, 0

Moreover, we should note that Z, “commutes” with
lower triangular Topelitz operators in the following
sense:

ZyH_=H_Zn.

Finally, we will also use the relations

Z,2,=1 and Z2;2,= [ é Op(lp }

We thus have the following result, which clearly shows
the H°-optimality of H? predictors for stationary pro-
cesses.

Theorem 2 (H*-Optimal Predictor) The opti-
mal H* norm for the problem

inf ||| Hz) - K(2)z'H(z) 0 ]|, & Yopt
causal k()
is given by
’ngf, =0d (Re) 3 (5)

where R, the “innovations variance” is found from the
canonical spectral factorization,

H(2)H*(z7") = M(2)R.M™(277), (6)

with M (z) monic (M (c0) = I,,) and M(z) and M~(2)
analytic in |z| > 1.

Yi-1 Yili—1

Proof: The most straightforward proof is to compute
Yopt using (4). Since here R = 0, we shall use the
second formula. Thus,

2 —
70;)! -

= o [H-HL—H-HZ; (H-H-)"' Z;H_H:].

To compute (H_H* )™, let us write the canonical spec-
tral factorization (6) in operator form as

& [H-HZ - H-HZ,(0+ 2, H-HLZ,) 2 H_H" ]
= G(H-HL—H-H 2, (H-Zn 2 HL) " Z;H_H.]

| Fort | [ e | [
M | My 0 | Res 0 M

M_Re_ ML =H_HL.

Moreover, M _ is invertible, since M is causally invert-
ible and

MZ! | 0

-1 __
M= MMM | M

Thus, defining A_ = M_ ’Rl/_z, so that A_ is invertible

and A_A* = H_H*, we may write

'yfp, = F[A_AY —A_ AT ZJ(A_AY)T 1Z,,A_A'L]
= G[A_AT —A_Z;A* A“‘A_IA_Z,,A‘:]
= Er[A A — A ZZA*]
= [A_(I-Z2;2,)A%)

“eleo ]
< ofdal]
_ sineny
where
A_-—— Ao
A A
A, A Ay
But A(z) = M(z) 172 50 that

(Ag+ Azt +..) = (I + Miz7' +..) RY/?,

since M (z) is monic. Thus Ay = RY? and

Vgpt =0 (RE) )

which is the desired result.



3 The Non-Stationary Case

A general estimation problem, in the finite-horizon
nonstationary case, is shown in Fig. 3. Here, once
again, {u; € Cm}i’io is an unknown input sequence,
{v; € CP}Y, is an unknown additive disturbance se-
quence, {y; € CP}, is a known measurement se-
quence, and H and £ are known causal linear time-
variant systems, that map their respective inputs to
outputs according to the rules

[ei} Ho‘o Uo
0] Hl,o H1|1 u1
= M - 2
ON Hnpo Hyn-1 Hnynw uUN
S—— ~~
o H u

and, similarly, s = Ly. The goal is to construct a
causal linear time-variant estimator, K, to estimate the
unobservable desired sequence {s; € C9}¥, from the
observations {y;}. The estimates are denoted by {3;}.

(2
Us; /L Yi 3
2
H ~pD— K —>
c -

Figure 3: A non-stationary estimation problem.

As in the stationary case, the behavior of any estimator
K can be captured by the induced transfer operator,
say Tx, that maps the unknown disturbances {u;} and
{R;l/zvi}, where R; = Rg/sz/z > 0 is a weighting
matrix, to the estimation errors {s; — §;}. Using Fig. 3,
it is straightforward to see that

TK=[£—K'H —/CR],

where we have defined R = Ro® R ® ... ® Ry. We
thus have the following problem.

Problem 2 (Nonstationary H* Estimation)
Find a causal estimator K that achieves

. _ A
inf & (77C) = Yopt- (7)
causal K
In order to give an expression for 7op, consider the

following leading submatrices of H:

Hy o
2 8 H’1,o Hy,

H;o H;;

’

H;;
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and similarly £ of £, for i = 0,1,...N. Note that
’H(_N) =H and ﬁ(_N) =L

Theorem 3 (Optimal H>® Norm) The
H®™ norm for Problem 2 is given by

. . . . -1 .
L7 (E(_') (1+H‘:)‘(R(j))“u<_‘)) z:‘_‘)*)

(8)

optimal

max
1=0,1,...

2
’Yopt

I

max &(C(_i)ll@*—
i=0,1,...N
ﬁ(i)n(mmm+H<i>uu)~)—1”(i)£(n~)

whereR(_i)ZROEBRléB...EBRi,

Proof: For the proof see [7, 8].
|

Note that the above result is the time-variant coun-
terpart of Theorem 1, since in the stationary case £
and H are doubly-infinite Toeplitz matrices so that all
their leading submatrices, at any time i, are equal to
L_ and H_. Therefore instead of computing the max-
imum singular values for various time instants, as in
(8), we need only compute it once, as in (4).

3.1 One-Step-Ahead Prediction

The one-step-ahead prediction problem, in the nonsta-
tionary case, is depicted in Fig. 3.1. Here H is a causal
linear system that generates the process {y;}. The lin-
ear system Z,H generates {y;_1}, since Z, denotes the
lower-triangular shift matrix,

0

0 ... I, 0
Thus the prediction problem becomes a special case of
the estimation problem (7) with

LoH , H=ZH
and with R = 0.
Thus, the submatrices in Theorem 3 become:

£ 5 HD and HY o ZOHD,
Moreover, we should note that Z,(,i) “commutes” with
lower triangular Toeplitz matrices in the following
sense: . @) o

ZOHY =HD 2D,

Finally, we will also use the relations

1 L) 2 ) = ! 0
s |1 0



Uy Yi—1

AT

Yi

Figure 4: The nonstationary prediction problem.

We thus have the following result, which clearly shows
the H*-optimality of H? predictors for nonstationary
processes.

Yii—1

Theorem 4 (Nonstationary H*-Optimal Predictor)

The optimal H*™ norm for the problem

N

inf ([ H-KZH 0]) 2y (9
causal k£
is given by
'ngt = Izg}la"x o (Re;) ) (10)

where Re = Reo ® Re1 ® ... @ Re N, the “innova-
tions variance”, is found from the block LDU (lower-
diagonal-upper) triangular factorization,

HH* = MR.M*,

where M is a block lower triangular matriz with unit
diagonal.

Proof: The proof is essentially identical to the proof
of Theorem 2 and so is omitted for reasons of space.

4 Conclusion

We showed that H2- and H*-optimal one-step-ahead
predictors coincide. This fact is rather straightforward
in the case of predicting a scalar stationary process.
However, for vector-valued stationary processes and for
nonstationary processes, the result is less obvious and
the proof requires further tools from H® theory that
have been developed in [7]. [See also [5, 6].]

Since there are fundamental differences between the
philosophies of the H? and H* approaches to estima-
tion and control, any estimator or controller obtained
from one formalism has often drastically different per-
formance with respect to the other criterion. However,
our result gives a non-trivial example of when the two
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formalisms lead to the same optimal design. This rep-
resents, in a sense, the “best of both worlds”, since the
resulting predictors are optimal both from a stochas-
tic (and hence expected-value) point of view, as well
as from a deterministic (and hence worst-case) point of
view. These results have also implications for problems
beyond one-step-ahead prediction, and in [9] we have
shown that for the important communications prob-
lem of decision-feedback equalization the H2- and H*-
optimal solutions are the same.

Finaly, we should mention that the above result is not
true for predictors that predict more than one unit
ahead in time. Nor is it true for predicting processes
related to the observations. Consider for example the
process,
Yi = 8i + v,

where {s;} and {v;} are independent (from both a
stochastic and deterministic point of view) processes.
Then, although the H2- and H-optimal predictors
Giji-1, of yi given {y;,j < i} coincide, the H?- and
H*>-optimal predictors &;;_;, of s; given {y;,j < i},
are in general different.
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