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Abstract

In this note we consider the following problem. Suppose a set of sensors is jointly trying to estimate a process. One sensor
takes a measurement at every time step and the measurements are then exchanged among all the sensors. What is the sensor
schedule that results in the minimum error covariance? We describe a stochastic sensor selection strategy that is easy to
implement and is computationally tractable. The problem described above comes up in many domains out of which we discuss
two. In the sensor selection problem, there are multiple sensors that cannot operate simultaneously (e.g., sonars in the same
frequency band). Thus measurements need to be scheduled. In the sensor coverage problem, a geographical area needs to be
covered by mobile sensors each with limited range. Thus from every position, the sensors obtain a different view-point of the
area and the sensors need to optimize their trajectories. The algorithm is applied to these problems and illustrated through
simple examples.

Key words: Sensor selection, Sensor location selection, Distributed sensor networks, Riccati-like equation, Random algorithms

1 Introduction and Motivation

Recently there has been a lot of interest in networks of
sensing agents which act cooperatively to obtain the best
estimate possible, e.g., see (Roumeliotis and Bekey 2002,
Hall and Llinas 1997, Viswanathan and Varshney 1997)
and the references therein. While such a scheme admit-
tedly has higher complexity than the strategy of treating
each sensor independently, the increased accuracy often
makes it worthwhile. If all the sensors exchange their
measurements, the resulting estimate can be better even
than the sensor with the least measurement noise (were
no information exchange happening). Works such as the
EYES project (Karl 2002), WINS (Estrin et al. 1999),
and Smart Dust (Kahn et al. 1999), are examples of sys-
tems implementing such networks. In addition, sensor
network ideas are also being used for fulfilling specific
tasks like reconnaissance, surveillance, data gathering
and so on (Weisbin et al. 1999, Rybski et al. 2000, Curtin
et al. 1993).
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Some special issues in sensor networks from an estima-
tion perspective are fusion of data emerging from multi-
ple nodes, association of measurements with targets in
case multiple targets are present, scheduling in case all
sensors cannot take or transmit simultaneous measure-
ments, optimal positioning of sensors and so on. In this
note, we present an algorithm to solve the problem of
sensor scheduling. In addition, the algorithm can also be
extended for use in the problem of optimal positioning
and trajectory generation.

The problem of sensor scheduling arises when one (or
multiple) sensors have to be selected out of N given sen-
sors at every time step. This might be the case if, e.g.,
there are echo-based sensors like sonars which can inter-
fere with each other. If the sensors observe a schedule
and thus minimise simultaneous (and hence interfering)
measurements, the total sensor power consumption can
also be reduced. Another situation where sensor schedul-
ing is useful is in tracking and discrimination problems,
where a radar can make different types of measurements
by transmitting a suitable waveform each of which has
a different power requirement. There might be shared
communication resources (e.g., broadcast channels or a
shared communication bus) that constrain the usage of
many sensors at the same time. Such a situation arises,
e.g., in telemetry-data aerospace systems. Because of its
importance, this problem has received considerable at-



tention in literature. The seminal work of (III et al. 1967)
showed that for linear plants and quadratic cost func-
tions, a separation property holds between the optimal
plant control policy and the measurement control pol-
icy. The measurement control problem, which is the sen-
sor scheduling problem, was cast as a non-linear deter-
ministic control problem and shown to be solvable by
a tree-search in general. That work proposed forward
dynamic programming and a gradient method for solu-
tion. To deal with the complexity of a tree-search, greedy
algorithms have been proposed many times, some ex-
amples being the works of (Oshman 1994, Kagami and
Ishikawa 2004, Gupta et al. 2004). Allied contributions
have dealt with robust sensor scheduling (A. Savkin and
R. Evans and E. Skafidas 2000), a greedy algorithm with
an information based cost measure (Zhao et al. 2002),
a numerical method for obtaining sub-optimal sched-
ules with error bounds (Alriksson and Rantzer 2005)
and include the works of (Miller and Runggaldier 1997,
Krishnamurthy 2002, Rago et al. 1996) etc. A different
numerical approach to solve the problem was provided
in (Athans 1972) where the problem was cast as a two-
point boundary value problem. The non-linear matrix
differential equations thus obtained were solved numer-
ically by a min-H technique. These ideas were extended
to discrete-time systems in (Kerr 1981-82) and the two
point boundary value problem was converted to an initial
value problem in (Kerr and Oshman 1995). In (Herring
and Melsa 1974), the technique was generalized to con-
sider multiple devices being chosen at the same time.

Our algorithm differs from these approaches in that it is
based on the idea of letting the sensors switch randomly
according to some optimal probability distribution to
obtain the best expected steady-state performance. 1 Be-
sides being numerically more tractable than tree-search
based and similar solutions proposed in the literature, it
does not rely on the sensors having considerable compu-
tational power or knowledge about other sensors. There
are numerous other advantages as will be pointed out
later. Our algorithm can also be applied to the prob-
lem of sensor trajectory generation for optimal cover-
age of an area. This problem arises when there are some
specified number of mobile sensors that can each sense
over a limited region but together they must monitor a
given area. The problem of optimal sensor location in
case there are no bounds on the range over which the
sensors can sense leads to the problem of Voronoi par-
titioning of the space and has been solved both in a
centralized framework (Okabe et al. 2000, Okabe and
Suzuki 1997, Du et al. 1999) and in a decentralized fash-
ion (Cortes et al. 2004). The problem when there are
range (or direction) limitations on the sensors has also
been looked at in the literature. However most of the
approaches that have been proposed are very applica-

1 As is made clear later, for computational ease, we actu-
ally minimize an upper bound on the expected steady-state
performance.

tion specific (Mori 1990, Nakamoto et al. 1997, Heng et
al. 1997). The general problem of determining the opti-
mal trajectory can again be cast as a tree search problem
and greedy approaches have often been proposed (Basir
and Shen 1995, Mukai and Ishikawa 1996, Chung et
al. 2004). We can again obtain many advantages over
such algorithms by using our method.

The paper is organized as follows. In the next section,
we state our assumptions and set up the problem. Then
we present our random sensor selection algorithm and
briefly analyze it. We illustrate the algorithm and some
of its advantages using some simple simulations. We fin-
ish with conclusions and avenues for future research.

2 Modeling and Problem Formulation

Consider a system evolving according to the equation

x[k + 1] = Ax[k] + Bw[k]. (1)

x[k] ∈ Rn is the process state at time step k and w[k]
is the process noise assumed white, Gaussian and zero
mean with covariance matrix Q. The initial state x[0] is
assumed to be a Gaussian zero mean random variable
with covariance Π0. The process state is being observed
by N sensors with the measurement equation for the i-
th sensor being

yi[k] = Cix[k] + vi[k], (2)

where yi[k] ∈ Rm is the measurement. The measurement
noises vi[k]’s for the sensors are assumed independent of
each other and of the process noise. Further the noise
vi[k] is assumed to be white, Gaussian and zero mean
with covariance matrix Ri. At every time step, one sensor
takes a measurement which is then communicated to all
the sensors (or a data sink) in an error-free manner. The
assumption of one sensor per time step is without loss of
generality. Since all the measurements are being shared,
all sensors have the same estimate of the process state
x[k], denoted by x̂[k]. Further the optimal estimate is
given by a Kalman filter assuming a time-varying sensor.
Assuming that the i-th sensor takes the measurement
at time step k, the covariance of the estimate error P [k]
evolves according to the Riccati recursion

P [k + 1] = AP [k]AT + BQBT−

AP [k]CT
i

(
CiP [k]CT

i + Ri

)−1
CiP [k]AT , (3)

with the initial condition given by P [0] = Π0.

It is obvious from (3) that error covariance is a func-
tion of the sensor schedule. We wish to find the sensor
schedule that minimizes the steady state error covari-
ance. We can represent all the possible sensor schedule
choices by a tree structure. The depth of any node in
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the tree represents time instants with the root at time
zero. The branches correspond to choosing a particular
sensor to be active at that time instant. Thus, the path
from the root to any node at depth d represents a partic-
ular sensor schedule choice for time steps 0 to d. We can
associate with each node the cost function evaluated us-
ing the sensor schedule corresponding to the path from
the root to that node. Obviously, finding the optimal se-
quence requires traversing all the paths from the root
to the leaves in the tree. If the leaves are at a depth δ,
a total of N δ schedules need to be compared. This pro-
cedure might place too high a demand on the computa-
tional and memory resources of the system. In the next
section, we present an alternative algorithm that does
not involve traversing the tree.

The problem of optimal sensor trajectory generation can
also be cast in the above framework. For simplicity, as-
sume that only one sensor is present. We discretize the
area to be covered into a grid and assume that the dis-
cretization is fine enough so that we only need to observe
the evolution of the process at these points. In other
words, sampling the underlying process at these discrete
points is sufficient to cover the entire area. We model the
limited sensing range by assuming (for example) that if
the sensor is at a particular point, it generates measure-
ments corresponding to that point only. As a simple ex-
ample consider that the area to be monitored has been
discretized into N points, denoted by l1, l2, · · · , ln. At
location li, the process evolves according to the equation

xi[k + 1] = Aixi[k] +
∑

j 6=i

Aijxj [k] + Biwi[k],

where we have assumed that the process state at location
li is also affected by the process states at other locations.
Thus by stacking the process states at all these locations
into a single vector x[k], we see that for the entire process,
the evolution is of the form given in (1). Similarly assume
that if the sensor is at location li, its measurement is
described by the equation

yi[k] = Hixi[k] + vi[k].

By defining Ci suitably, this can easily be recast in the
form of (2). Clearly there are N such virtual sensors.
Thus we see that the sensor trajectory problem is equiv-
alent to the sensor scheduling problem described earlier
where N sensors are present but only one can be se-
lected to take the measurement. We can model physi-
cal constraints on the sensor motion by assuming that
the sensor can move from its current location only to
its immediate neighbors. In the tree approach described
earlier, it imposes some constraints on the branches of
the tree that can be present. In our algorithm, this con-
straint can be modeled by assuming that the sensors
are selected with transition probabilities described by a
Markov chain. The states of the Markov chain represent

the location of the sensor. Thus the probability of moving
from one location to a location far away in a single time
step is zero. Some of the results in this paper were also
discussed for the special case when A is block-diagonal
(the system dynamics at different points are uncoupled)
in (Tiwari et al. 2005).

3 Description of the Algorithm

Our algorithm consists of choosing sensors randomly ac-
cording to some probability distribution. The probabil-
ity distribution is chosen so as to minimize the expected
steady state error covariance. Note that we can not cal-
culate the exact value of the error covariance since that
will depend on the specific sensor schedule chosen. Hence
we optimize the expected value of the error covariance.
For obtaining the expected value given any particular
probability distribution, we proceed as follows. Consider
a sensor that senses a process of form (1) according to
the relation

y[k] = Cx[k] + v[k],

where the noise v[k] has covariance matrix R. Then we
define

fC(P ) = APAT + BQBT

− APCT
(
CPCT + R

)−1
CPAT

fk
C(P ) = fC (fC (· · · (fC(P ))))

︸ ︷︷ ︸

fC applied k times

.

Thus the error covariance of the estimate at time step
k + 1 if Kalman filter is being used is given by fC(P ),
where P is the error covariance at time step k. We would
need the following properties of this operator.

Lemma 1 fC(P ) is concave in P provided P is positive
semi-definite and R is positive definite.

PROOF. Proof follows readily from the fact (Boyd and
Vandenberghe 2003) that a function f(x) is concave in
x if and only if f(x0 + th) is concave in the scalar t for
all x0 and h.

Lemma 2 Let X and Y be two positive semi-definite
matrices. If X < Y , then fC(X) < fC(Y ). Moreover,
for any C and for any positive semi-definite matrix X,
fC(X) ≥ BQBT .

PROOF. Following (Sinopoli et al. 2004), introduce

φ (K,X) = BQBT +(A + KC) X (A + KC)
T
+KRKT ,

and note that

K = −AXCT
(
CXCT + R

)−1 ∆
= KX
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minimizes φ (K,X). Moreover φ (KX , X) = fC(X).
Also note that φ(K,X) is an increasing function in the
second argument. Thus, we see that

φ (KX , X) ≤ φ (KY , X) ≤ φ (KY , Y ) .

This proves the first part of the lemma. For the second
part, note that

fC(X) = φ (KX , X) ≥ φ (KX , 0) = BQBT .

Consider the time-varying Kalman filter recursion given
in (3) for the system given by (1). Suppose that the sen-
sor at every time step k is chosen from among the choices
S1,S2,. . . ,SN with the probability of Si being chosen at
time step k being πk

i . The associated sensor measure-
ment matrix is Ci and the noise covariance matrix is Ri.
To begin with, assume that the choice is done indepen-
dently at each time step. Denoting the choice at time
step k by C[k] and R[k], the evolution of the error co-
variance for any sensor can be written as

P [k + 1] = fC[k](P [k]),

with P [0] as the initial condition. Note that the error
covariance P [k + 1] is random since it depends on the
particular sequence of chosen Si’s (0 ≤ i ≤ k). We look
at its expected value and try to evaluate the expectation
in the limit as k → ∞. Thus we are interested in

E [P [k + 1]] = E
[
fC[k](P [k])

]
(4)

Explicitly evaluating this expectation appears to be in-
tractable. We look instead for an upper bound. We have
the following result.

Theorem 3 (Upper Bound and its Convergence)
Let there be N sensors out of which one sensor is ran-
domly chosen per time step for taking measurements. If
the i-th sensor is chosen at time step k with probability
πk

i independently at each time step, then the expected
error covariance of the estimate is upper bounded by
∆[k + 1] where ∆[k] is given by the recursion

∆[k + 1] = BQBT + A∆[k]AT−
N∑

i=1

πk
i

[

A∆[k]CT
i (Ri + Ci∆[k]CT

i )−1Ci∆[k]AT
]

, (5)

with the initial condition ∆[0] = P [0]. Further suppose
that the sensor probabilities πk

i tend to constants qi as
k → ∞. If there exist matrices K1, K2, · · · , KN and a
positive definite matrix P such that

P > BQBT +
N∑

i=1

qi

(

(A + KiCi) X (A + KiCi)
T

+ KiRiK
T
i

)

,

then the iteration in (5) converges for all initial condi-
tions P [0] ≥ 0 and the limit P̄ is the unique positive
semi-definite solution of the equation

X = BQBT + AXAT−
N∑

i=1

qiA
[
XCT

i (Ri + CiXCT
i )−1CiX

]
AT . (6)

PROOF. First note that the quantities P [k] and C[k]
are independent. Thus we can explicitly take the expec-
tation in (4) with respect to the probability distribution
of C[k] and write

E [P [k + 1]] =

N∑

i=1

πk
i E

[

fCi
(P [k])

]

,

where the expectation on the right hand side is now
over C[0], . . . , C[k − 1]. Now we use Jensen’s inequality
(see, e.g., (Gradshteyn and Ryzhik 2000)) on account of
Lemma 1.. Thus we immediately obtain

E [P [k + 1]] =

N∑

i=1

πk
i E

[

fCi
(P [k])

]

≤
N∑

i=1

πk
i fCi

(E [P [k]]) (7)

Since fCi
(.) is an increasing operator, we obtain the re-

quired upper bound. For the convergence, proof is simi-
lar to the one of Theorem 1 in (Sinopoli et al. 2004). We
redefine the quantities

L(Y ) =

N∑

i=1

qi (A + KiCi)Y (A + KiCi)
T

φ (Ki, P ) = BQBT

+

N∑

i=1

qi

(

(A + KiCi) X (A + KiCi)
T

+ KiRiK
T
i

)

and follow the arguments given in that proof.

The convergence of the upper bound implies bounded-
ness of the recursion in (4). As an example, if all eigen-
values of A are strictly less than unity in magnitude,
we can always find matrices Ki’s and P satisfying the
above conditions by choosing Ki’s as the zero matrices
and P as 2P̄ where P̄ is the positive definite solution of
the Lyapunov equation

P̄ = AP̄AT + BQBT .
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Thus as long as A is stable, the recursion in (7) converges.
The case when A is stable (and thus the process to be
estimated does not grow unbounded) is very important
in a large number of practical applications of estimation.

The algorithm thus consists of choosing qi’s so as to op-
timize the upper bound as a means of optimizing the
expected steady state value of Pk itself. The problem is
solved under the constraint of probabilities being non-
negative and summing up to 1. The optimization prob-
lem can be solved by a gradient search algorithm or even
by brute force search for a reasonable value of N . Af-
ter determining the probability values, the sensors are
turned on and off with their corresponding probabilities.
Note that the implementation does assume some shared
randomness and synchronization among the sensors so
that two sensors are not turned on at the same time.
This can readily be achieved, e.g., through a common
seed for a pseudo-random number generator available to
all the sensors. Alternatively a token-based mechanism
for the scheme can be implemented. Also note that the
algorithm is run off-line and it has to be re-applied ev-
erytime the number of sensors changes. However, if a
sensor is stochastically failing with a known probability,
we can model that in the algorithm.

For the cases when A is not stable, we need to find out
if (4) diverges. We now obtain a lower bound for the
recursion. If the lower bound does not converge, it will
imply the non-convergence of the expected steady state
error covariance. We note the following result.

Theorem 4 (Lower Bound and its Convergence)
Suppose there are N sensors out of which one sensor is
randomly chosen per time step for taking measurements
and the i-th sensor is chosen with probability πk

i at time
step k independently at each time step. Define

π̄k,t
j = πk

j πk−1
j · · ·πk−t+1

j .

Then the expected error covariance of the estimate at time
step k is lower bounded by X[k] where X[k] is obtained
from the equation

X[k] = π̄k−1,k
j fk

Cj
(P [0]) +

(
1 − πk−1

j

)
BQBT +

π̄k−1,1
j

(
1 − πk−2

j

)
fCj

(
BQBT

)
+

π̄k−1,2
j

(
1 − πk−3

j

)
f2

Cj

(
BQBT

)

+ · · · + π̄k−1,k−1
j

(
1 − π0

j

)
fk−1

Cj

(
BQBT

)
, (8)

where P [0] is the initial error covariance used in calcu-
lating the expected error covariance through (4). Note
that one such lower bound results for each value of j =
1, · · · , N. Further, suppose that the sensor probabilities
πk

i tend to constants qi as k → ∞. Then the condition
for X[k] given in (8) to stay bounded as k → ∞ is

qj |λmax

(
Āj

)
|2 ≤ 1, (9)

where qj is the probability of choosing the j-th sen-

sor while λmax

(
Āj

)
refers to the eigenvalue with the

maximum magnitude of the unobservable part of A
when the pair (A,Cj) is put in the observable canonical
form (Dullerud and Paganini 2000).

PROOF. The event space for the sensor schedule till
time step k−1 (which determines the value of P [k]) can
be partitioned into k + 1 disjoint events Ei of the form:
sensor Sj was chosen consecutively for the last i time
steps and in the time step just before that, Sj was not
chosen, 0 ≤ i ≤ k. Thus the expected error covariance
is given by

E [P [k]] =

k∑

i=0

p(Ei)V (Ei) ,

where p(Ei) refers to the probability of Ei occurring and
V (Ei) refers to the value of error covariance under the
event Ei. Now consider the i-th term in the summation,
where i < k. Note that

(1) When the sensor Sj is chosen at time step m, the
error covariance at the time step m + 1 is given
by fCj

(Σ) where Σ was the error covariance at the
present time step.

(2) When any other sensor is chosen the corresponding
error covariance at time step m+1 is lower bounded
by BQBT . Moreover if, then, at time step m + 1,
the j-th sensor is chosen, the error covariance at
time step m + 2 is lower bounded by fCj

(BQBT ).

By combining these two facts, we see that

V (Ei) ≥ f i
Cj

(
BQBT

)
.

Thus we obtain

p(Ei)V (Ei) ≥ π̄k−1,i
j

(
1 − πk−1−i

j

)
f i

Cj

(
BQBT

)
.

For the term Ek, from the definition we obtain

p(Ek)V (Ek) = π̄k−1,k
j fk

Cj
(P [0]) .

By adding together the terms p(Ei)V (Ei), we obtain
that X[k] as given in (8) is indeed a lower bound for the
expected error covariance.

For the purpose of studying the boundedness of estima-
tion error, we will denote the sensor used for the calcula-
tion in (8), Cj , by C. Note that we can assume without
loss of generality that the pair (A,C) is in the observer
canonical form (If not, an invertible linear transforma-
tion can convert it to the companion form. This trans-
formation will not affect the boundedness of estimation
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error.). Denote the matrices in the form

A =

[

Ā11 0

Ā21 Ā22

]

C =
[

C̄1 0
]

.

Denote by e[k] the error in estimating x[k]. Split e[k]
in accordance with the observer canonical form so that
with a suitable choice of the Kalman filter gain matrix
K[k], the error evolves as

e[k + 1] = (A − K[k]C) e[k] + Bw[k] + K[k]v[k],

where

e[k] =

[

e1[k]

e2[k]

]

K[k] =

[

K1[k]

K2[k]

]

,

e1[k] corresponds to the observable part of the system
and e2[k] to the unobservable part. Denote

P [k] =

[

E
[
e1[k]e1[k]T

]
E

[
e1[k]e2[k]T

]

E
[
e2[k]e1[k]T

]
E

[
e2[k]e2[k]T

]

]

=

[

P11[k] P12[k]

P21[k] P22[k]

]

.

Since e1[k] corresponds to the observable part of the
system, P11[k] remains bounded. P22[k] evolves as

P22[k + 1] = Ā22P22[k]ĀT
22 + Σ[k],

where Σ[k] depends on noise terms, P11[k] and P12[k] but
not on P22[k]. Note that Σ[k] remains bounded as k →
∞ if P11[k] and P22[k] remain bounded. Now for time-
invariant probabilities of sensor usage, the i-th term of
the lower bound in (8) is of the form

Ti = qi−1
j (1 − qj)f

i−1
Cj

(
BQBT

)
.

Because of the observability assumption, the Riccati re-
cursion for the observation error covariance matrix when
only sensor j is used will converge to a constant value ir-
respective of the initial condition. Thus for large enough
i, f i−1

Cj

(
BQBT

)
= P [i − 1] and the i-th term can be

rewritten as

Ti = qi−1
j (1 − qj)P [i − 1].

Thus X[k] is obtained through a summation of the form

X[k] =

k−1∑

i=0

qi−1
j (1 − qj)P [i − 1]

=

[ ∑k−1
i=0 γ[i]P11[i − 1]

∑k−1
i=0 γ[i]P12[i − 1]

∑k−1
i=0 γ[i]P21[i − 1]

∑k−1
i=0 γ[i]P22[i − 1]

]

,

where γ[i] = qi−1
j (1 − qj). There are four terms here

whose boundedness needs to be considered. Now, as al-
ready stated, the (1, 1) term is bounded because of the
observability assumption. The (2, 2) term is bounded if
and only if (9) holds. Also if both (1, 1) and (2, 2) terms
are bounded, the off-diagonal terms of P [k] are bounded
by the Cauchy-Schwarz inequality.

Note that the bounds we have obtained can be special-
ized to cases when one sensor pertains to a data loss sit-
uation similar to that considered in (Sinopoli et al. 2004)
and (Liu and Goldsmith n.d.). If the sensors are being
chosen according to a Markov chain, we can still obtain
upper and lower bounds in a similar form as the ones
discussed above. We give the bounds below. The conver-
gence conditions can be derived in a similar way as be-
fore. Let [qij ] be the transition probability matrix of the

Markov chain. Also let πj
k be the probability of being in

Markov state j at time step k.

Theorem 5 If the sensors are chosen according to a
Markov chain, E[Pk] is upper bounded by Xk and lower-
bounded by Yk where

Xk+1 =

N∑

j=1

πj
kXj

k+1, πj
kXj

k+1 =

N∑

i=1

fCj

(
Xi

k

)
qijπ

i
k

Yk =

k∑

i=1

qi−1
jj

(

πj
k+1−i − qjjπ

j
k−i

)

f i
Cj

(
BQBT

)

+qk−1
jj πj

0f
k
C0

(P0) .

PROOF. The proof of the lower bound is similar to the
one for the i.i.d. case. For the upper bound, let Ck = j
denote that j-th sensor was chosen at time step k. Then
E [Pk] =

∑
πj

kE [Pk|Ck−1 = j] . Also

πj
kE [Pk+1|Ck = j]

= πj
k

N∑

i=1

E [Pk+1|Ck = j, Ck−1 = i] Pr(Ck−1 = i|Ck = j)

=
N∑

i=1

E
[
fCj

(Pk)|Ck−1 = i
]
qijπ

i
k−1

≤

N∑

i=1

fCj
(E [Pk|Ck−1 = i]) qijπ

i
k−1.

Since fCj
(.) is an increasing operator, we obtain the re-

quired bound. In the above derivation, we have used the
fact that fCj

(Pk) and Ck are conditionally independent
given Ck−1.
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4 Simulation Results

In this section, we apply our algorithm to a few sample
problems and show that the algorithm offers a new in-
teresting and powerful tool in several problems. Our first
example is in the domain of sensor scheduling. Assume
a vehicle moving in 2-D space according to the stan-
dard constant acceleration model.This model assumes
that the vehicle has constant acceleration equal to zero
except for a small perturbation. We assume that the ve-
hicle moves in two dimensions. Denoting the position of
the vehicle in the two dimensions by px and py, the ve-
locities by vx and vy and with a discretization step size of
h, the dynamics of the vehicle are of the form (1) where

A =










1 0 h 0

0 1 0 h

0 0 1 0

0 0 0 1










B =










h2/2 0

0 h2/2

h 0

0 h










X =










px

py

vx

vy










.

The term w[k] is the perturbation term in acceleration
and is modeled as a zero mean white Gaussian noise. In
the numerical example, h = 0.2. The process noise is
considered to have covariance matrix Q given by

Q =

[

1 0.25

0.25 1

]

.

We assume two sensors with the measurements taken by
the two sensors, y1 and y2 being described by

yi[k] =

[

1 0 0 0

0 1 0 0

]

X[k] + vi[k]. (10)

The terms vi[k] model the measurement noise, again as-
sumed white, zero mean and Gaussian and also indepen-
dent from each other and from w[k]. We consider values
of the sensor noise covariances as

R1 =

[

2.4 0

0 0.4

]

R2 =

[

0.7 0

0 1.4

]

. (11)

The plot given in Figure 1 illustrates that choosing any
one sensor at all time steps is not optimal. The figure
plots the cost measured as the sum of the traces of the
error covariance matrices of the estimates of the two sen-
sors when they adopt the strategy of choosing only sen-
sor 1 or only sensor 2 or when they choose an arbitrarily
generated schedule over 50 time steps. For comparison,
the cost achievable by the optimal sensor strategy found
by a sliding window approach to the tree search (Gupta
et al. 2004) is also given. We see that the even an arbi-
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Using optimal strategy

Using only sensor 1

Using only sensor 2

Using arbitrary switching schedule

Fig. 1. Sensor switching helps to bring the cost down.

trary sensor switching strategy can help to bring down
the cost.

Next we apply our random choice algorithm to find the
optimal probability distribution. On optimizing the up-
per bound in (6) over q1 and q2, the optimal probability
for sensor 1 turns out to be q1 = 0.395. Indeed, if we find
the optimal sequence by a complete tree search, it turns
out that in the steady state, the percentage of sensor 1
in the sequence is about 37%. For this probability distri-
bution, the steady state value of the upper bound of the
sum of the traces of the expected error covariance ma-
trices for the two sensors turns out to be 2.3884, which
compares well with the value of about 2.3 obtained by
the optimal strategy. Note that our algorithm results in
orders of magnitude less calculation than tree search al-
gorithms and finds a near-optimal schedule in the steady
state. The computational savings can be very significant
if we need to study the optimal sensor schedule as some
sensor parameter is varied. As an example, let the mea-
surement noise covariance of the second sensor be given
by

R2 = α

[

0.7 0

0 1.4

]

.

Figure 2 plots the optimal percentage of use of sensor 1,
as the parameter α is varied. The plot shows that there is
a threshold phenomenon such that increasing the noise
of one sensor beyond that level results in that particular
sensor never being used. The reduction in computation
needed makes our algorithm much more scalable in the
number of sensors than the tree-based algorithms.

In addition, there are several unique advantages that
our algorithm offers over the conventional algorithms.
A very important one is the issue of sensor costs. Fre-
quently, there are other considerations beyond estima-
tion accuracy in using one sensor over another. As an
example, it might be more costly to use a very accurate
sensor at every time step. Similarly, we might want some
sort of fairness such that one sensor is not used all the
time such that all its power is drained. Usually, it is not
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Fig. 2. Optimal probability of use of sensor 1 as sensor 2 gets
noisier.

clear how to appropriately weight the sensor costs with
estimation costs. Thus it is not clear how to even gen-
erate a tree for the sensor schedule choices. However it
is easy to take sensor costs into account with our algo-
rithm. As an example we consider three sensors of the
form of (10) being present with the measurement noise
covariances being given by

R1 =

[

3.24 0

0 1.04

]

, R2 =

[

0.25 0

0 1.36

]

,

R3 =

[

0.56 0

0 0.56

]

.

Suppose the three sensors are transmitting to a single
data sink so that the only energy consumption is in tak-
ing a measurement and then broadcasting it. If we try
to optimize the probability distribution, we obtain that
sensor 2 should be chosen with a probability of 0.2 and
sensor 3 with a probability of 0.8. However, such a strat-
egy would lead to sensor 3 draining away all its power
very quickly and thus we might want to impose an addi-
tional constraint that on average, no sensor is used more
than twice as much as any other sensor.We restrict our
search to the relevant q1 − q2 space and come up with
the optimal probabilities satisfying the additional con-
straint as sensor 1 being used with a probability of 0.2
and sensors 2 and 3 being used each with a probability
of 0.4.

Another situation in which our algorithm is much more
easily used is when there is some randomness imposed
on the system. As an example, consider the case of two
sensors with measurement noise covariances given by the
values in (11). Suppose that the sensors are communi-
cating with a data sink over a communication channel
that randomly drops packets with probability λ. Com-
pared to the conventional methods, it is easy to take
the channel into account while using our algorithm. We
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Fig. 3. Optimal probability of use of sensor 1 varies if the
channel is dropping packets.
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Fig. 4. Bounds may not be very tight.

set up equation (5) assuming that there are three sen-
sors present. The first two sensors have covariance ma-
trices given above and they are chosen with probabilities
q1(1 − λ) and q2(1 − λ). The third sensor corresponds
to the packet being dropped (and hence no measure-
ment being taken) and it is chosen with a probability of
(q1 + q2) λ. Then we optimize this bound over the pa-
rameters q1 and q2. Figure 3 shows the change in the
optimal probability of choosing sensor 1 as the packet
drop probability λ is varied. The plot shows that the
packet drop probability plays a big role in determining
the optimal sensor schedule.

The lower bound derived in Theorem 4 is useful for ob-
taining the region in the sensor usage probability space
where the expected error covariance in (4) diverges. We
illustrate the lower bound with an example now. First
consider the same system as in (1) being measured by
two sensors of the form of (10). The measurement noise
covariances are given by the values in (11). The upper
bound and the lower bounds are plotted in Figure 4. We
can see that the lower bounds may not be very tight.
However the main utility of the lower bounds is in pre-
dicting when the expected error covariance necessarily
diverges. We consider the same example with the second
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sensor replaced by a sensor of the form

y[k] =

[

0 0 1 0

0 0 0 1

]

X[k] + v[k],

with the sensor noise covariances given by (11). We see
that the plant is unobservable while using the second
sensor alone and hence as the probability of using the
second sensor increases, the error covariance would di-
verge. It can be shown that although there is a huge gap
between the lower and upper bounds, both bounds di-
verge at q1 = 0.56 which is thus the critical probability
for error divergence. This value also matches the value
given in Theorem 4 since the largest eigenvalue of the
unobservable part of A is 1.5. It may be noted that in
general, the probabilities when the bounds diverge will
not match and they serve as lower and upper bounds
on the critical probability. An important special case
is when any one of the matrices Ci is invertible which
renders the condition of divergence of the lower bound
both necessary and sufficient for the divergence of the
expected error covariance.

To consider a representative example for sensor cover-
age, we consider an area gridded into N = 4 points
being surveyed by one sensor. Each point is associated
with a scalar process that tries to find the average of
the neighboring points. Thus denoting the process at the
i-th point by xi and the state of the entire system by

X =
[

x1 x2 x3 x4

]T

, we see that the system evolves as

X[k + 1] =










0.5 0.5 0 0

0.33 0.33 0.33 0

0 0.33 0.33 0.33

0 0 0.5 0.5










X[k] + w[k],

where w[k] is white noise with mean zero and covariance
equal to the identity matrix. When the sensor is at point
i, it can measure the value of xi corrupted by a Gaussian
zero mean noise. Thus, as explained earlier, we have 4
virtual sensors taking measurements according to

yi[k] = xi[k] + vi[k],

where vi[k] are all independent of each other and their
variances are given by R1 = 1, R2 = 3.1, R3 = 0.5 and
R4 = 1.5. We model the sensors as switching according
to the transition probability matrix










1 − λ1 λ1 0 0

λ2 1 − 2λ2 λ2 0

0 λ2 1 − 2λ2 λ2

0 0 λ1 1 − λ1










.

We want the Markov chain to reach a stationary distribu-
tion irrespective of the initial sensor probabilities. Thus
we constrain the constants λ1 and λ2 to be non-zero.
Optimizing the upper bound yields the values λ1 = 1
and λ2 = 0.45 with the optimal upper bound being 7.63.
100000 simulations with these values of λi’s yielded an
average steady state covariance of 7.62. Using a greedy
algorithm leads to only sensor 3 being used at all time
steps with the steady state covariance of 8.72. As with
the sensor scheduling example, we can illustrate various
different cases when our algorithm offers advantages over
the conventional methods. These can correspond to, e.g.,
constraining the probability that the sensor be located
at some points that are more dangerous than others.

5 Conclusions and Future Work

In this paper, we described an algorithm for stochasti-
cally selecting sensors to minimize the expected error co-
variance. We presented upper and lower bounds on the
error covariance. This algorithm offers many advantages
over conventional algorithms for sensor selection. We ap-
plied the algorithm to the problems of sensor scheduling
and sensor coverage. Some simple numerical examples
were also presented.

The work can potentially be extended in many ways.
Finding out how tight the bounds are and coming up
with tighter bounds is one avenue. Moreover we have
talked only about expected error covariance with no in-
dication of the spread of the actual value of the covari-
ance. Coming up with an understanding of that would
also be interesting.
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