
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 7, JULY 2006 2857

Communication Over a Wireless Network With
Random Connections

Radhika Gowaikar, Student Member, IEEE, Bertrand Hochwald, Senior Member, IEEE, and Babak Hassibi

Abstract—A network of nodes in which pairs communicate over
a shared wireless medium is analyzed. We consider the maximum
total aggregate traffic flow possible as given by the number of
users multiplied by their data rate. The model in this paper dif-
fers substantially from the many existing approaches in that the
channel connections in this network are entirely random: rather
than being governed by geometry and a decay-versus-distance
law, the strengths of the connections between nodes are drawn
independently from a common distribution. Such a model is
appropriate for environments where the first-order effect that
governs the signal strength at a receiving node is a random event
(such as the existence of an obstacle), rather than the distance
from the transmitter. It is shown that the aggregate traffic flow
as a function of the number of nodes is a strong function of
the channel distribution. In particular, for certain distributions
the aggregate traffic flow is at least

(log )
for some 0,

which is significantly larger than the ( ) results obtained for
many geometric models. The results provide guidelines for the
connectivity that is needed for large aggregate traffic. The relation
between the proposed model and existing distance-based models
is shown in some cases.

Index Terms—Ad-hoc networks, random connections, through-
put.

I. INTRODUCTION

AN EARLY study of traffic flow in shared-medium wire-
less networks appears in the seminal work of Gupta and

Kumar [11]. They show that in a grid network of nodes on the
plane having a deterministic power scaling law, trans-
mitters can talk simultaneously to randomly chosen receivers.
Similar results for networks with randomly placed nodes can
also be obtained (see, for example, [10] for a recent account).
Different models can yield somewhat different conclusions [1],
[3], [5], [9], [12], [14]–[17]; nevertheless, if we do not permit
the transmitter/receiver pairs to approach one another [6], or for
very low attenuation laws [15], the model of a power decay law
(as a function of distance) seems to yield a network in which
the number of nodes that can talk simultaneously grows much
slower than . Network models that incorporate channel fading
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as well as geometric path loss have also been proposed [23], [22]
but the scaling behavior of these is not much different from that
of [11]. We wish to study networks with a different connectivity
model.

The result in [11] has the following heuristic explana-
tion. If a node wishes to transmit directly to a randomly chosen
node (whose distance is approximately away on av-
erage), it has two choices: talk directly, or talk through a se-
ries of hops. If it tries to talk directly, the transmitter generates
energy in a circle of radius around itself. However, this
energy, which is seen by the intended receiver becomes interfer-
ence for the other nodes in the circle. Thus, some fraction
of the entire network of nodes is bathed in interference; an
undesirable consequence. If it decides instead to talk through
hops, the transmitting node can pass its message to a neighbor,
who in turn passes it to a neighbor and so on for hops to
the intended receiver. This strategy limits interference to imme-
diate neighbors but ties up nodes in the hopping process.
Although this turns out to be the best strategy, only si-
multaneous messages can be passed before all nodes in the
network are involved.

We change the model of the wireless medium from a model
based on distance to one based on randomness. In multiantenna
links, a linear increase in capacity (in the minimum of the
number of transmit/receive antennas) is obtained when the
channel coefficients between the transmit and receive an-
tennas are independent Rayleigh-distributed random variables
[4], [13]. It is, therefore, now generally believed that a rich
scattering environment, once thought to be detrimental to
point-to-point wireless communications, may actually be bene-
ficial. We show that a similar effect may hold for the expected
aggregate data traffic in a wireless network; certain forms of
randomness can be helpful.

There are several reasons why one may choose a random
model over one that is based on distance. While distance effects
on signal strength are important for nodes that are very near or
far from each other, many networks are designed with minimum
and maximum distances in mind. Decay laws of the form
for a fixed may not be relevant for networks of small
physical size. Additionally, through the use of automatic gain
control, a radio often artificially mitigates distance effects unless
the node is saturated (too close) or “dropped out” (too far). Many
first-order signal-strength effects in such networks are then due
to random fluctuations in the medium, such as Rayleigh and
shadow fading. A distance-power model cannot readily account
for shadow fading since signal strength at the receiver is deter-
mined more by the presence of an obstacle blocking the path
to the transmitter than by distance. In addition, recent investiga-
tions show that the connectivity of ad hoc networks with channel
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randomness, such as that caused by shadow fading, is similar to
the connectivity in a random graph [24]. Some models that con-
sider channel randomness are studied in [25], [26], where it is
shown that the resulting random network has some realistic con-
nectivity properties lacking in a purely deterministic model. We
are concerned not just with connectivity but also throughput.

We adopt the premise that randomness can have a first-order
effect on the behavior of a network. We assume that the channels
between nodes are drawn independently from an identical distri-
bution. We allow the distribution of the channel between nodes
to be arbitrary and allow it to vary with the number of nodes .
Our model covers environments where the the signal strength at
a receiving node is governed primarily by a random event (such
as the existence of an obstacle). We believe that the study of
such wireless networks with random connections is important
for three reasons: First, many real wireless networks have a sub-
stantial and dominant random component; second, we show that
such networks may have qualitatively different traffic scaling
laws than the scaling obtained in geometric models; finally, our
results give insight into the connectivity that a network should
have to allow large aggregate traffic flows. A short version of
this paper appears in [27].

In general, any realistic model of a large network should
have a model of connectivity that has a balance of randomness
and distance-based effects. In [28], one such model is proposed
and its throughput is analyzed. Also, [8] uses a “radio model”
to show that in the presence of obstructions and irregularities,
channels become approximately uncorrelated with one another,
and the probability of good links between nodes that are far
apart increases in wireless local area networks (WLAN’s).
The radio model in [8] essentially uses the same independence
assumption that we do, but uses distance to determine the
probability of a connection link. We show in Section VIII-A.1
how to apply our traffic-flow conclusions to this radio model to
determine a favorable distance between nodes.

A. Approach

We suppose that the connection strengths between the
nodes of the wireless network are drawn independently and
identically from a given arbitrary distribution. In geometric
networks such as [11], a node may communicate its message
in hops to nearby neighbors so that it ultimately reaches the
intended destination. In our random model, although there is
no geometric notion of a near neighbor, we can find an equiv-
alent of a near neighbor by introducing the notion of “good
paths,” where connections stronger than a chosen threshold

are called good. Transmissions to relays and destinations
occur along only good paths. By figuratively drawing a graph
whose vertices are all the nodes in the network, yet whose
edges are only the good paths, we obtain a specific random
graph model called , where an edge between any pair
of the nodes exists with probability . (In our case, is
simply the probability that the connection strength exceeds

.) is a very well-studied object and we leverage some
of its known properties to establish disjoint routes between
sources and their intended destinations. However since we are
analyzing a wireless network, we must also account for the
effects of interference between all nodes, including those that

do not have good connections between them. Fortunately, our
use of the goodness threshold also makes the analysis of
message-failures (due to interference and/or noise) tractable.
Our analysis yields an achievable aggregate throughput which
is a function of the chosen threshold . A judicious choice of
can maximize this achievable throughput. To complement our
achievability results, we also present on some upper bounds on
aggregate throughput that show that our results are sometimes
tight.

II. MODEL OF TRANSMITTED AND RECEIVED SIGNALS

We assume that the wireless network has narrowband flat-
fading connections whose powers are independent and identi-
cally distributed (i.i.d.) according to an arbitrary distribution

. Thus, if is the connection between nodes and ,
then the are i.i.d. random variables with mar-
ginal distribution . For maximum generality, we allow

to be a function of the number of nodes . As an
example, consider

(1)

where is the Dirac delta-function. This distribution is a
simple model of a shadow-fading environment where, for any
pair of nodes, with probability there exists a good connection
between them (fading causes no loss), and with probability
there exists an obstruction (fading causes a complete loss). In a
general network of nodes, we may let be a function
of to represent changes in the geography or network topology
as the network increases in size. Although and are
the only possibilities in the distribution (1), we may also intro-
duce values of that depend on . Fig. 1 pictorially displays an
example of wireless terminals whose connections may obey the
model (1).

The behavior of such a network varies dramatically with . At
the extreme of , no paths are ever blocked and all nodes
are fully connected to each other. While this situation permits
any node to readily talk to any other node in a single hop, the
overall network throughput is low because talking pairs generate
an enormous amount of interference for the remaining nodes. If
many nodes try to talk simultaneously, the overall interference
is overwhelming. At the other extreme of , everyone is
in a deep fade; now interference is minimal. However, no nodes
can talk at all (we assume a transmission power limit). Thus,
we have competing effects as a function of : Increasing ben-
efits the network by improving connectivity thus allowing for
shorter hops, but hurts the network by increasing interference to
other receivers. We are led to ask: What is optimal? What is
the resulting network aggregate traffic? Is this optimal likely
to be something we encounter naturally? If not, can we induce it
artificially? We answer some of these questions but, more gen-
erally, we look at how an arbitrary affects the traffic.

A. Detailed Model

Let the network have nodes labeled . Every pair of
nodes is connected by a channel that is denoted by
the random variable ; there are channel random
variables. The channel strengths, are drawn i.i.d.
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Fig. 1. Nodes are able to establish connections with each other if there is no
object in their path. Equation (1) models the presence of an object as a random
event where each path has a connection of strength one with probability p, and
otherwise has a connection of strength zero.

according to the probability density function (pdf) . Once
drawn, these channel variables do not change with time.

Node wishes to transmit signal . We assume that is
a complex Gaussian random process with zero mean and unit
variance. Each node is permitted a maximum power of watts.

We incorporate interference and additive noise in our model
as follows. Assume that nodes are simultane-
ously transmitting signals respectively. Then
the signal received by node is given by

(2)

where represents additive noise. The additive noise variables
are i.i.d., drawn from a complex Gaussian distri-

bution of zero mean and variance . The
noise is statistically independent of .

B. Successful Communication

In (2), suppose that only node wishes to communicate
with node and the signals are interference. Then,
the signal-to-interference-plus-noise ratio (SINR) for node is
given by

We assume that transmission is successful when the SINR ex-
ceeds some threshold . If the SINR is less than we say that
transmission is not possible. Thus, even though , we

Fig. 2. Schedule of relay nodes: Source s communicates with destination d

using relays r ; . . . ; r . The solid lines indicate intended transmissions
and the dashed lines indicate potential interference. A schedule is valid if it
meets the no-collision conditions that a node can receive or transmit at most
one message in any time slot and that no node can transmit and receive simul-
taneously.

use as the transmission rate. Using as
the rate, rather than the more precise , simplifies our
analysis.

III. NETWORK OPERATION AND OBJECTIVE

We suppose that nodes, denoted by , are randomly
chosen as sources. For every , a destination node is chosen
at random, thus making source-destination pairs. We assume
that these nodes are all distinct and, therefore, .
Source wishes to transmit message to destination
and has encoded it as signal . We wish to see how many
source-destination pairs may communicate simultaneously.
The sources may talk directly to the destination nodes or may
decide to communicate in hops through a series of relay nodes.

A. Communicating With Hops

In general, we suppose that the source-destination pair
communicates using a sequence of relay nodes

. ( represents the number of
hops.) Define and . The path from to
is then . In time slot

, we have nodes transmitting simultane-
ously to nodes , respectively. We ask
that nodes decode their respective
signals and transmit them to the next set of
relay nodes in the th time slot, and so on. A natural
condition to impose is that the relay nodes that are receiving
(or transmitting) messages in any time slot be distinct; the
messages do not collide. In addition, we ask that relay nodes
not receive and transmit at the same time. We refer to these
conditions together as the property of no collisions in the rest of
this paper. In general, we do not require to be distinct from

for any . This means that a relay can effectively hold on
to a message in a time slot; hence, effectively represents the
maximum number of hops needed for all the source-destination
pairs (see Fig. 2).

B. Throughput

With the aforementionee procedure, we have simultaneous
communications occurring in time slots. Message reaches
the intended destination successfully if it can be decoded
by each relay . Assume that a fraction of messages
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reach their intended destinations in this way. Then, we define
the throughput as

(3)

where is the SINR threshold, and we are using the natural log-
arithm. Thus, is the sustainable throughput per user
if the users do not collide, as mentioned in Section II-B. We mul-
tiply this factor by the number of noncolliding source-destina-
tion pairs , divide by the number of hops, and subtract the frac-
tion of dropped messages . The resulting throughput depends
on and we sometimes add subscripts to the variables involved
to indicate this , , and . Typically, we force to
go to zero as grows. We demonstrate a scheme for choosing
the relay nodes and analyze the throughput performance of this
scheme. Thus, we give an achievability result for . We now
state this result.

IV. MAIN RESULT

Theorem 1: Consider a network on nodes whose edge
strengths are drawn i.i.d. from a pdf . Let denote
the cumulative distribution function corresponding to
and define . Choose any such that

, where as . Then, there
exists a positive constant such that a throughput of

(4)

is achievable for any positive such that and any
that satisfy the following conditions:

1)

(5)

2)

(6)

where and are the mean and variance of , respec-
tively. The SINR threshold is given by

The parameter satisfying is the
goodness threshold mentioned in Section I-A. By figuratively
drawing an edge when , we obtain a random graph that

fits the well-studied model . Condition (5) is needed
to obtain a noncolliding schedule in this random graph. This
issue is discussed in detail in Section V. Once the schedule is
obtained, we incorporate the effects of interference between
noncolliding transmissions and provide an error analysis in
Section VI. Condition (6) forces to go to zero. In Section VII,
we combine the results of Sections V and VI to prove the the-
orem. Note that the theorem indicates an achievable throughput
and does not preclude that higher throughputs are possible.

Although it is not evident from the theorem statement, it turns
out that the optimum number of hops grows at most log-
arithmically with . The throughput, therefore, depends most
strongly on the number of simultaneous transmissions and
the SINR threshold .

The throughput expression (4) is general and accommodates
an arbitrary . The parameter is the number of noncol-
liding simultaneous transmissions. We discuss the constant
and the parameter later. The joint selection of , , and

that maximizes the achievable throughput (4) is not easily ex-
pressed in closed-form as a function of the pdf . In general,
these parameters need to be determined on a case-by-case basis.
We show how to find the necessary parameters in Section VIII
where we give several examples.

Since (4) holds for any satisfying (5), we may choose
as large as possible [achieving equality in (5)] and optimize only
over and . In fact, when , it is possible to show
that the optimum is the maximum possible. Hence, we state
a more specific achievability result.

Corollary 1: In the network of Theorem 1, if the
throughput (4) is maximized by choosing as large as possible.

At this point, we would like to refer back to the problem
setting of [11] and note that their model of a random network,
where nodes wish to send information at the rate of
bits per second to a randomly chosen destination is closest to
the problem we consider here. For the random network, an
aggregate throughput capacity of is obtained in
[11]. (This is only slightly worse than the transport capacity of

for the somewhat different model of arbitrary networks,
which has been discussed in the introduction to this work.)
In the example presented in Section VIII-B, we examine the
scaling behavior of the throughput with a pdf that is
obtained based on a distance-decay law. The effects of doing
away with the geometric model become more clear with that
example.

V. SCHEDULING TRANSMISSIONS

With a view to meeting a minimum SINR of at every relay
node at every hop, we impose the condition that each transmit-
ting link be stronger than some threshold . We require that

, where is a design parameter. We denote
links that satisfy as good. We require the path from

to to use only good links.
The threshold is a parameter that we may choose as a com-

promise between quantity and quality of the connections. By
making large, we increase the quality of the link. However,
if we make it too large we risk not being able to form an unin-
terrupted path of good links from the source to the destination.
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In this section, we determine the relation between and the
lengths of source-destination paths.

Define (for convenience, we drop the sub-
script in the rest of this section). Using our wireless com-
munication network, we define a graph on vertices as fol-
lows: For (distinct) vertices and of the graph, draw an edge

if and only if in the network. Call the resulting
graph . The graph then becomes an instance of
a model called on vertices in which edges are chosen
independently and with probability [2]. This graph shows the
possible paths from the various sources to the various destina-
tions using only good links, but does not show the possible in-
terference encountered if these paths are used simultaneously.
We examine this interference in Section VI.

Graphs taken from the model have many known prop-
erties. For instance, the values of for which the graph is con-
nected is well characterized. As increases, the probability that
the graph is connected goes to one. If (where

need not be a constant) the probability of the graph being
connected is [2]. This implies that there is a phase transi-
tion in the graph around . For less than this, the prob-
ability of connectivity goes to zero rapidly and for greater than
this it goes to one rapidly. Another property that is well studied
is the diameter. The diameter of a graph is defined as the max-
imum distance between any two vertices of the graph, where the
distance between two vertices is the minimum number of edges
one has to traverse to go from one to the other. Results in [2] and
[18] tell us that for in the range of connectivity the diameter
behaves like . (It is also known that the average distance
between two nodes has the same behavior.) This tells us that
a message can be transmitted from one node to another using
at most hops. What it leaves unanswered is the question
of how to establish such transmissions simultaneously and on
noncolliding paths.

The problem of obtaining a noncolliding schedule can be
thought of more generally as a problem of avoiding or re-
ducing interference. Not surprisingly, several works that study
throughput scaling in large networks encounter the same issue,
irrespective of the precise network model being employed.
For instance, in [11], the number of routes that pass through
a certain small area of the network (which they call a cell)
can be thought of as the bottleneck that determines the overall
throughput. Similarly, in [10], the number of disjoint paths
that can be found in a certain area can be perceived as the
limiting factor. Various techniques are used in these works
to enable this calculation. While [11] uses results relating to
the Vapnik–Chervonenkis dimension, [10] uses ideas inspired
by percolation theory and random geometric graphs [29].
In the setting of this work, it is most natural to use random
graph theory, and we use a relatively recent result regarding
vertex-disjoint paths by Broder et al. [19] in order to find a
satisfactory noncolliding schedule.

A. Scheduling Using Vertex-Disjoint Paths in

Two paths that do not share a vertex are called vertex-dis-
joint. Note that any two paths that are vertex-disjoint satisfy our
“no-collisions” property; however, the reverse statement is not

true. Thus, the vertex-disjoint condition is stronger than our re-
quirement of noncolliding paths. For a set of (disjoint) pairs
of vertices , the question of whether there exists a set of
vertex-disjoint paths connecting them is addressed in [19]. Their
result states that with high probability, for every (sufficiently
random) set of pairs and not greater than ,
where is a constant, there exists a set of vertex-disjoint paths.
This result is within a constant of the best one can hope to
achieve since the average distance between nodes in is

and, thus, we can certainly have no more than
vertex-disjoint paths. Also stated in [19] is an algorithm that
finds paths using various random walk and flow techniques.
Here, we reproduce their main result.

Theorem 2: Suppose that and ,
where . Then, there exist two positive constants ,

such that, with probability approaching 1, there are vertex-
disjoint paths connecting to for any set of pairs

satisfying the following.

1) The pairs in for are disjoint.
2) The total number of pairs, , is not greater than

.
3) For every vertex , no more than a -frac-

tion of its set of neighbors, , are prescribed endpoints,
that is , where and

.

Furthermore, these paths can be constructed by an explicit ran-
domized algorithm in polynomial time.

In fact, the existence of the paths is proved by stating and ana-
lyzing a randomized algorithm that finds them. However, we use
this theorem only as an existence result to demonstrate achiev-
able throughputs. Some comments about their randomized al-
gorithm can be found in Sections VI and X-A.

In our communication network, condition 1) that be
disjoint pairs is already met. The second imposes a restriction
on how large can be. Since the source-destination pairs
are chosen at random, the third condition is also met. (In fact,
the third condition is imposed in [19] to prevent someone from
choosing the pairs in a particularly adversarial manner
using knowledge of the graph structure.)

We can restate the theorem for our purposes.
Theorem 3: Suppose that and ,

where . Then there exists a constant such
that, with probability approaching 1, there are vertex-disjoint
paths connecting to for any set of disjoint, randomly chosen
source-destination pairs

provided is not greater than .
The constant in this theorem is the same required in The-

orem 1. It is not explicitly specified. We examine the lengths
that these paths can have in the following lemma.
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Lemma 1: Almost all of the vertex-disjoint
paths obtainable under Theorem 3 have lengths that grow no
faster than .

Proof: Suppose that some fraction of paths, say where
have average lengths of the form where

goes to infinity. Since there are nodes in the network, we
have

This implies that and, therefore, must go
to zero. Therefore, we conclude that at most a vanishing fraction
of the paths can have lengths that grow faster than and,
asymptotically, all the paths have lengths that grow no faster
than .

Hence, the number of hops is (asymptotically) at most
. We use this fact in the error analysis in Section VI.

VI. PROBABILITY OF ERROR

Consider a schedule of noncolliding paths.
Theorem 3 shows that such a schedule exists. One possible (but
often impractical) way to obtain such a schedule is to use an ex-
haustive search that first lists all the paths between every source-
destination pair and then randomly chooses a set that satisfies
the vertex-disjoint property. Because we thereby choose a path
based on vertices rather than edges, we are assured that any
edges that might exist between vertices along one path to ver-
tices along another are i.i.d. Bernoulli distributed with param-
eter . We also conclude that the channel connections between
nodes along different paths in the network are i.i.d. with distri-
bution .

More generally, randomized algorithms that choose noncol-
liding paths without using edge information between such paths
also have the property of generating i.i.d. interference between
the paths. An example of such a randomized algorithm that
avoids an exhaustive search is [19].

We now consider the probability that a particular message
fails to reach its intended destination. Destination fails to re-
ceive message if the SINR falls below at any of the
relay nodes . Denote by the event that
relay node does have an SINR greater than . Note that the
events are identical. Therefore, we have

is received successfully

(7)

where the inequality comes from the union bound. We now com-
pute . This is the event that node has an SINR
lower than

(8)

where the first inequality is because and (8) comes
from the Chebyshev inequality and the fact that the variance of

is . The second inequality requires

the condition , or

(9)

This condition on is intuitively satisfying: if we assume that
is large, then we expect the interference term in the denominator
of the SINR to be approximately . This would imply
that setting the threshold to less than would be

sufficient to ensure that most hops would exceed this threshold.
Note that in the previous analysis for , we have

assumed that there are interference terms. This would
be true if all messages are being transmitted in that partic-
ular time slot. However, this may not be the case, if, by that
time slot, some of the messages have already reached their des-
tinations successfully or have already failed to be decoded at
some at some relay node. In such a case, there will be fewer than

interference terms. This means that the calculation above
is conservative and the actual probability of error may be smaller
than that obtained above. However, from the relevant theory in-
volving random graphs as well as from the simulations, we ex-
pect the path lengths to cluster quite densely rather than taking
on a wide range of values. Thus, most messages reach their des-
tination within very few time slots of each other. Therefore, we
believe that the above error analysis is not too conservative and
hence do not expect a significantly lower error probability in
practice.

We define to be the probability that the SINR threshold is
not exceeded along one or more of the hops. From (7),
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. We force to go to zero. From Lemma 1,
is at most and we have

(10)

and we require the right-hand side to go to zero.
We mention that inequality (10) requires to have a variance

that does not go to infinity. There are several distributions of
practical interest in which the variance does go to infinity, but
the mean is finite. (For example, for
is considered in [28].) In this case, an alternative inequality can
be obtained by applying the Markov bound to rather
than the Chebyshev bound. The result is

(11)

An achievable throughput can be obtained using either the
Chebyshev bound of (10) or the Markov inequality above. The-
orem 1 is obtained using the Chebyshev inequality. Theorem
4, presented at the end of Section VII, is an achievability result
obtained using the Markov inequality (11). In general, we
expect the Chebyshev inequality to be tighter than the Markov
inequality and therefore prefer to use Theorem 1 whenever
has finite variance.

VII. PROOF OF THEOREM 1

We now combine the results of Section V on the maximum
number of noncolliding paths and Section VI on the proba-
bility of successful transmission along these paths. We need

in order to do sched-
uling. In addition, we need

1) to have noncolliding paths (Theorem 3)

2) to meet the SINR threshold [(10)]

3) to apply the Chebyshev inequality [(9)]

To satisfy condition 3), we set

where . Substituting for this in the second condition,
we get

This and condition 1) are the only conditions on . For any sat-
isfying these two conditions, we get an achievable throughput.
This gives us Theorem 1.

The theorem gives an achievable throughput as a function
of , and but does not attempt to optimize these pa-
rameters. Because goes to zero and is determined by ,
to find the optimum we need to maximize

over . In the particular case when

is positive, the expression is nondecreasing in (the first
derivative is nonnegative). Hence, satisfying (5) with equality is
optimum. This proves Corollary 1.

Finally, we state without proof an achievability result ob-
tained using the Markov inequality (11) to bound the error,
rather than the Chebyshev inequality (10). This result can be
used in place of Theorem 1 for distributions that have a finite
mean but an infinite variance.

Theorem 4: Consider a network on nodes whose edge
strengths are drawn i.i.d. from a probability distribution function

. Let denote the cumulative distribution function
corresponding to and define .
Choose any such that , where
as . Then, there exists a positive constant such that a
throughput of

(12)

is achievable for any positive such that and any
that satisfy the following conditions:

1)

(13)

2)

(14)

where is the mean of . The SINR threshold is
.

VIII. EXAMPLES AND APPLICATIONS

In this section, we apply Theorem 1 to some particular channel
distributions. Since, as in geometric models, the throughput
is often interference limited, we find that densities that lead to
significant interference per transmitter generally underperform
those that generate only a small amount of interference.
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A. Shadow Fading Model

We revisit the model (1)

(15)

where is the Dirac delta-function. This pdf models the situ-
ation where strong shadow fading is present. The signal power
is 0 in the presence of an obstruction and is 1, otherwise. We find
the value of that maximizes the throughput. (We drop the sub-
script .) A natural choice for the goodness threshold is 1,
which gives . We need to satisfy
(where ) in order to use Theorem 1.

Note that we have and . It is possible
to check that unless , the throughput is at most constant.
With and sufficiently large , the condition

is satisfied. Therefore, according to Corollary 1 the
maximum possible achieves maximum throughput. Hence, we
consider . Since , and we
may replace by in (6) and the SINR threshold. Since
also goes to infinity, (6) becomes

. Therefore, may be any positive constant . With this,
the SINR threshold becomes

which goes to zero. Thus, and we have
. This is maximized when is as

small as possible, or . The result is summarized in
Corollary 2.

Corollary 2: Consider a network on nodes where edge
strengths are drawn i.i.d. from the distribution in (15). Then,
for large the throughput is maximized for and
is given by

as , where is any function going to infinity and
and are constants.

This throughput is almost linear in and requires the net-
work to be sparsely connected; with a connection probability
of , each node is connected with only approximately

other nodes. For example, with nodes, we
have and each node connects on average
to only seven other nodes. Perhaps surprisingly, increasing or
decreasing this connectivity has a detrimental effect. While it is
clear that it is possible for a network to be under-connected, it
is apparently also possible for a network to be over-connected.
The simulations in Section X-B also demonstrate this effect.

Fig. 3. Link probability p versus distance r̂ as given by (17) for � = 2; 3; 4.
Also shown are dotted lines at p = (log 100)=100 � 0:046 and
p = (log1000)=1000 � 0:0069 indicating the optimum throughput
point for shadow-fading with 100 and 1000 nodes respectively. As a function
of r̂, p is relatively insensitive for large r̂.

1) Implications for a Certain Radio Model: In [7] and [8], a
wireless connectivity model is introduced where the probability
of a good link is expressed as

(16)

where is a (suitably normalized) distance between the trans-
mitter and receiver and is a parameter that depends on the
degree of shadow fading and the distance pathloss exponent.
Usually where large values indicate a strong shadow
component. The links between different sources or destinations
are modeled as statistically independent.

For nodes approximately from each other, the model (16) is
equivalent to our model of shadow fading (15) with .
As we show in Section VIII-A, maximum throughput is attained
for . The “equivalent distance” for nodes is found
by solving

(17)

for . Nodes approximately this distance from each other then
have the excellent throughput promised in Corollary 2. Because
we cannot have a large network of nodes exactly equidistant
from each other, (17) only has operational meaning if the link
probability is relatively insensitive to the distance when

. We show that it is.
As the number of nodes increases, the optimum link-prob-

ability decreases or, equivalently, the distance be-
tween nodes increases. For large , we may approximate

, and thus (17) becomes

The sensitivity of as a function of is very low when is
small. We show this in Fig. 3, where we display versus for
various values of . The dotted lines in the figure shows the ap-
proximate optimum operating point for networks with 100 and
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1000 nodes. We see that the optimum is generally very small
and relatively insensitive to , and the best network performance
is generally therefore obtained when the nodes are relatively far
apart from one another, with a wide range of acceptable dis-
tances. This suggests that a large high-throughput network of
nodes with optimum (small) is possible.

We comment that the authors in [8] also consider how shadow
fading can reduce the hop-count in a network and they use some
graph-theoretic concepts in their arguments. They do not, how-
ever, attempt to obtain a throughput result by finding simul-
taneous noncolliding paths, nor do they incorporate the detri-
mental effects of interference to show that a network can be “too
connected.”

B. Density Obtained From a Decay Law

In this example, we construct a pdf from the marginal density
of the channel strengths in a geometric model. For every node,
the channel coefficients to the remaining nodes follow a deter-
ministic law based on distance. If we group these coefficients
according to their magnitude , we obtain a certain number of
coefficients whose magnitude falls in the interval .
We seek a pdf whose average number of magnitudes matches
this deterministic law.

In an actual geometric model, the distribution of channel
magnitudes depends on the location of the nodes. We make a
simplifying assumption: We suppose that the nodes are in a
circular disk and consider the node at the center of the disk to
derive the density. We thereby ignore the effects of the disk
boundary. We assume the nodes are dropped with density
(nodes per unit area) but ensuring a minimum distance of
from the center. The area of the entire disk is .

In deriving the density of the channel coefficients, we use a
power law of the form , where a node transmitting with
power is received by another node at distance with power

. We assume that is monotonically decreasing. The
most significant difference between our model and the stan-
dard geometric model is in the independence of the channel
coefficients in our model that does not exist in the geometric
model. The geometric model has a correlation structure in the
coefficients where channels of similar strength are clustered in
rings around the center node. In our model, coefficients of sim-
ilar strength, although the same in number as the geometric
model, are distributed randomly and not necessarily geometri-
cally colocated.

Consider a node at the center of the disk transmitting at power
. The fraction of nodes receiving power is given by

where

In particular, if we have a decay law of the form ,
this tells us that the fraction of nodes receiving power is
given by

for

This is a cumulative distribution function and by differenti-
ating it with respect to we obtain the pdf for the edge strengths
seen by the central node as

(18)

We assume that connections are drawn i.i.d. from this
distribution.

We apply our results to this network and obtain the following
corollary.

Corollary 3: Consider a network on nodes where edge
strengths are drawn i.i.d. from the distribution

Then, the achievable values of and throughputs are
achievable:

.

(19)

(20)

where and are constants and and are
functions going to infinity.

We see that almost linear throughput can be obtained
for . This differs substantially from the or

results obtained for the structured deterministic
model with the same decay law. Our results show that it is
not the marginal distribution of the power that impedes the
throughput in a geometric power-decay network, but rather
the spatial distribution of these powers. We notice that in the
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geometric model, nodes transmit to their nearest neighbors and
therefore messages take up to hops to reach their intended
destinations. In the random model, nodes talk across their good
links and only hops are necessary to send a message
across. This is due to two factors: The first is that far fewer
nodes get drowned out in the interference when one node trans-
mits, thus permitting more nodes to transmit simultaneously
and the second is that any two nodes in the random graph are
only hops away, rather than the of the deterministic
model.

It is easy to see that both advantages come about from the
absence of the geometric constraints compared to the determin-
istic model. If we think of the example of this section in terms
of the network of [11], but with the spatial constraints removed,
it is not surprising that the throughput scaling is much more fa-
vorable than . We can conclude that this improve-
ment arises from the introduction of randomness in the network
model.

C. A Distribution With Constant Mean and Variance

Consider a general distribution that has a constant
mean and variance. For such a distribution, one can show that
choosing is the best choice and leads to the following
corollary.

Corollary 4: Consider a network on nodes where edge
strengths are drawn i.i.d. from a distribution where the
mean and variance of are independent of . Then, the
throughput is given by

and the optimum maximizes while satis-
fying .

Perhaps surprisingly, distributions with constant mean and
variance, while allowing us to apply Corollary 4, can have
widely different throughputs. This is illustrated by the next few
examples.

D. An Exponential Density

Let . For this pdf, the mean and variance are
constant, and we can apply Corollary 4. The obtained througput
is summarized later.

Corollary 5: Consider a network on nodes where edge
strengths are drawn i.i.d. from a distribution .
Then, a throughput of

is achievable as where , are constants.
We see that a random network dominated by an exponential

pdf has a throughput that grows only logarithmically with .
This network has good connectivity since the number of hops is
small, but is also unfortunately dominated by interference. Thus,
only few transmissions can occur simultaneously. We show in
Section IX that this throughput is tight to first order in .

E. A Heavy-Tail Distribution

Consider a network on nodes where edge strengths are
drawn i.i.d. from , where is such that

integrates to 1. Clearly, the mean and variance of this dis-
tribution are constant with respect to . Therefore, we can apply
Corollary 4. The optimum turns out to be
and we have the following corollary.

Corollary 6: Consider a network on nodes where edge
strengths are drawn i.i.d. from the distribution ,

. The throughput is then

F. Lognormal Fading

Consider a network on nodes where edge strengths
are drawn from a lognormal distribution. Thus

, where and

are parameters of the distribution. We have
and . Because the mean and variance
are constant, we may apply Corollary 4 and get the following
result.

Corollary 7: Consider a network on nodes where edge
strengths are drawn i.i.d. from the distribution

The throughput is then

We see that the throughput grows as which can also

be written as or . Thus, the throughput
is considerably better than obtained with the exponential
density (Rayleigh fading).

G. Tradeoff Between and

In most of the previous examples, we notice that the optimum
goes to infinity; hence the optimum goes

to zero. In these cases we approximate by . In ad-
dition, if goes to infinity, we can further approximate as

. In this case, we have . This expres-
sion depends only on and is independent of and . We
can therefore increase (decrease) , thus decreasing (increasing)
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and (as long as ) the throughput

remains unaffected. Hence, it is sometimes possible to tradeoff
the number of simultaneously communicating source-destina-
tion pairs with the SINRs at which they communicate without
affecting the aggregate throughput.

IX. UPPER BOUNDS

Our method of finding the throughput relies on finding good
edges along which the desired communication can take place.
This method does not preclude other methods from possibly
doing better. In the cases where the throughput is of the form

, the optimal throughput cannot be better by more than the

factor because the maximum throughput cannot scale
more than linearly (unless the channel density is somehow
chosen such that the maximum received power increases as the
number of nodes increases—we exclude such densities here).

However, when the throughput we compute turns out to be
of the order of for , or as with the exponential
density, it is not clear that we cannot do better. In this section, we
present an approach to computing an upperbound on throughput
that shows that we sometimes cannot do better.

The throughput is given by . We ignore the
in the denominator and find an upperbound for .

Thus, we allow ourselves to choose source-destination pairs
from a given network and find the highest SINR threshold that
can be met for all of them simultaneously. This is equivalent to
finding a bound for the best single hop communication. Clearly,
by doing this, our achievability results are certain to be at least
a factor of away from the upperbound. However, we know
that can be no larger than , which is often a small
factor.

There are ways of choosing source-des-
tination pairs in a network. Assume that a threshold is
fixed. Then, for a randomly drawn set of source-destination
pairs, there is a probability, say , that a received message
satisfies the SINR threshold and is decoded successfully. The
probability that all received messages satisfy the threshold is

. Therefore, for a given pair , the expected number of
sets of source-destination pairs that satisfy the threshold is

Note that depends on , and the pdf from which
the connections are drawn. We say that a pair is feasible
if there exists at least one set of source-destination pairs such
that each of the SINRs exceeds . The probability that a par-
ticular pair is feasible can be bounded as follows:

is feasible

of -pairs that satisfy the threshold is

-pairs that satisfy the threshold

where the Markov inequality is used.
If for a particular choice of we have going

to zero then that choice is infeasible. Otherwise may be
feasible. We can thereby characterize all pairs that may
be feasible. The largest value of taken over these
pairs gives us an upperbound on the throughput.

Note that this approach is general and can be used for any pdf,
but requires a calculation of

where all the channel coefficients in the SINR expression are
drawn i.i.d. according to . For certain densities, such as
the exponential, we may compute and get an upperbound as
follows.

If , then

With this

We now want to characterize pairs for which
does not go to zero. We have

If goes to infinity (with ) and
is negative then goes to zero. Therefore, for
going to infinity, we have as a
bound on the throughput. If is constant, it is easy to see
that cannot grow faster than , hence the throughput
is again limited by where is now a
constant. Thus we have shown an upperbound of on
the throughput. This happens to coincide (to within a con-
stant) with the throughput obtained in our achievability result
(Section VIII-D). In our scheme it turns out that using two hops
is optimal for any . Hence, although the upperbound derived
here is on , it matches the achievability result for

very closely.

X. SIMULATIONS AND CONCLUSION

Theorem 1 gives a very specific achievability result but (4)
involves a constant that is not explicit. This constant has its
origins in Theorem 3 where the number of vertex-disjoint paths
is computed. When we are confronted with a specific network
with a finite number of nodes , we would like an explicit es-
timate of the number of noncolliding paths. In this section we
provide such an estimate; we also briefly introduce the notion of
“bad” edges, discuss decentralized algorithms for attaining our
achievability results, and provide computer simulations of some
of the networks analyzed in Section VIII.
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A. Noncolliding Paths

In Section V, we use a result of [19] to establish the existence
of noncolliding paths. In this section, we present a construc-
tive method of obtaining these paths and analyze the expected
number of noncolliding paths thereby obtained. The algorithm
we present is used extensively in Section X-B.

We begin by choosing nodes as source nodes and
nodes as their respective destination nodes. For
the first source-destination pair, a shortest path connecting them
(using only links that exceed ) is found. This is done using a
standard breadth-first search algorithm [20] in which a rooted
tree is constructed. All of the nodes begin by being “undiscov-
ered”. The source node acts as the root of the tree (at depth zero)
and is labeled as “discovered”. We then find all the nodes that
are its neighbors and call them discovered. These are at distance
one from the source and hence at depth one in the breadth-first
search tree. The nodes at depth one are then processed succes-
sively. All of the neighbors of each node that are still undiscov-
ered are put in the tree at depth two and their labels are changed
to discovered. The process continues till there are no undiscov-
ered nodes. Clearly, each node appears at most once in the tree.
A shortest path from the source (root) to the destination is ob-
tained by simply finding that node in the tree and moving up the
tree to the source node. If the destination does not appear in the
tree it has no path to the source.

Once the shortest path for the th source-destination pair is
established it is recorded and all nodes are relabeled as “undis-
covered;” the entire process is repeated to find the shortest path
for the st source-destination pair. This is done till paths
are found for all pairs.

We then eliminate colliding paths on this list, starting with the
first source-destination pair. If a node used on the path between

and collides with a node on some other path, we eliminate
path 1, otherwise, we keep it. We proceed in order and eliminate
the th path if it collides with any of paths
and keep it otherwise. Note that since we start with shortest
paths, a relay never appears more than once on a particular path.

Let us bound the probability that paths and collide for
. Without loss of generality, we can set and .

We now have (21), as shown at the bottom of the page. The
inequality is a standard union bound and the last equality is be-
cause the relay nodes on the th path are drawn uniformly at
random from from the set of all nodes of the graph (excluding
and ). (We assume that the algorithm that chooses the shortest

path for does not use any knowledge of the previously
chosen paths.)

Denote by the event of keeping the th path. This event
comprises the intersection of the events that the th path does not
collide with the st through th paths. These
events are identical although they are not necessarily indepen-
dent. However, for the purposes of an approximation we may
assume they are independent and compute as follows:

paths and do not collide

paths and do not collide

paths and collide

paths 1 and 2 collide

The inequality is a consequence of (21). We expect the in-
equality to be an approximate equality when is small. The
expected number of successful paths is then

Expected noncolliding

(22)

(23)

because decreases rapidly with . This
calculation, although based on an incorrect independence as-
sumption is often useful to get an estimate of the number of
noncolliding paths that we can expect to find.

We observe that in [19] vertex-disjoint paths are found
successively and the nodes that are used in paths for source-
destination pairs are eliminated entirely from the graph
before finding the path for the st pair. The paper adroitly
proves that at each stage the remaining graph has edges that
are “approximately” i.i.d. (from the appropriate distribution).

path collides with path

(21)
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Fig. 4. Number of computer-found noncolliding paths versus n for a shadow-
fading model with connection probability 2(logn)=n (solid curve) versus n.
Also shown are the approximation (22) (dashed curve closest to solid curve) and
the approximation (23) (next-closest dashed curve) using values of h obtained
in the computer simulation. The dash-dotted curve is (22) computed using h =
log(n)= log(np).

The approximation we use previously deals with the loss of
the i.i.d. property by simply ignoring it. Fig. 4 shows that
the approximations (22) and (23) can be very accurate. The
figure shows the number of computer-found noncolliding paths
obtained in the shadow-fading model in Section VIII-A with
link probability . (We provide more details
about this simulation in Section X-B.) The most accurate
approximation is obtained when the number of hops in (22)
and (23) is also taken from the simulation. However, we may
always approximate the number of hops before the simulation
as . This final approximation is presented
as the dashed–dotted curve.

B. Simulations

We revisit some of the examples analyzed in Section VIII to
see how well our analytical predictions match computer-gen-
erated simulations. We begin with the shadow-fading network
analyzed in Section VIII-A.

Fig. 5 shows the aggregate throughput and minimum SINR of
a shadow-fading network as a function of the number of nodes

in a computer-generated simulation where the channel con-
nections are chosen as in Section VIII-A. The analytical re-
sults suggest that, for best throughput, we should choose

for going to infinity arbitrarily slowly. We
therefore choose . The computer simulation be-
gins by establishing a network of connections whose channels
are drawn i.i.d. according to (15). Noncolliding paths (using the
method described in Section X-A) are established and the min-
imum SINR obtained along the th path, denoted , is found.
We are assured that an SINR of can be supported by the path
and we use this rather than the threshold of that has been used
in the analysis. Although the threshold of is significant in ob-
taining the analytical throughput guarantee, we believe that the
notion of the minimum SINR along a path is more useful in a

Fig. 5. Aggregate throughput and minimum SINR versus number of nodesn in
a shadow fading network with connection probability p = 2(logn)=n. The left
y-axis contains the scale for this increasing function of n. We see that the aggre-
gate throughput increases nearly linearly. The average SINR obtained along the
paths (see scale on the right y-axis) drops with n, and according to the results
in Section VIII-A should go to zero as 1= log logn.

practical system. Therefore, the quantity is then
computed, weighted by the number of hops on path , summed
over , and then normalized by the total number of hops con-
tained in all paths. This gives a measure of the throughput per
path, where paths that are longer (have more hops) count more
heavily in the average. This throughput-per-path is then multi-
plied by the number of noncolliding paths and divided by the
average number of hops to provide the aggregate throughput.
Typically, we expect and observe only a small variation in the
path lengths. Therefore, whether we divide by the average or
largest path length does not make much difference.

The throughput shown in Fig. 5 is an increasing func-
tion of whose -axis is labeled on the left. The minimum
SINRs obtained along the th path are averaged over
and displayed as a decreasing curve whose -axis is labeled
on the right. As predicted in Section VIII-A, the aggregate
throughput grows nearly linearly. We see that the average
SINR per path, decreases slowly with , especially when is
large; Section VIII-A shows that the SINR should go to zero as

.
The following applies to all simulations described in this

section: i) Computer simulations were repeated and averaged
approximately 100–200 times, depending on the size of the
network and variability of the results. ii) The nodes have unit
transmit power and noise variance . Hence,
on a unit channel and in the absence of interference, the SNR
is 10 dB. iii) We do not prescribe an SINR threshold. Rather,
we accept any noncolliding path and use its resulting SINR in
our averages. We believe this to be reasonable in practice (the
threshold is only the guaranteed minimum). iv) The figures
often show two plots; the aggregate throughput generally given
by an increasing function of and whose scale is on the left
y -axis, and the average minimum SINR generally given by a
decreasing function of and whose scale is on the right -axis.
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Fig. 6. Aggregate throughput and minimum SINR versus connection proba-
bility p in a shadow-fading network of 1000 nodes. We see that the throughput
is maximized at p � 0:008, which is not far from (log 1000)=1000� 0:0069,
the large-n maximizing p predicted in Section VIII-A.

Fig. 7. Aggregate throughput and minimum SINR versus number of nodesn in
a network with exponential fading. We see that the throughput grows logarith-
mically using the optimum � computed in Section VIII-D. The average SINR
obtained along the paths decays approximately as (logn)=n. Shown in dashed
lines is the detrimental effect of choosing a constant � = (log 100)=2.

v) Although the analysis in the paper uses logarithms with base
, the throughputs in the figures are given in bits/channel-use.

Fig. 6 shows the aggregate throughput and minimum SINR of
the same shadow-fading network, this time as a function of for
a fixed nodes. We see from the figure that the max-
imum throughput is attained when . Section VIII-A
predicts that the maximum throughput is achieved when

. Ignoring the term, we
see a good match between the theory and the simulation.

Fig. 7 shows the aggregate throughput and minimum SINR of
a network with exponential fading analyzed in Section VIII-D
as a function of . For large enough , the optimum threshold
is and should be chosen as large as possible.

Fig. 8. Aggregate throughput and minimum SINR versus number of nodes n
in the decay-density network analyzed in Section VIII-B. Equation (20) (for
m > 2) predicts that the throughput should grow approximately linearly.

For purposes of illustration, we choose as large as possible,
even for the relatively small values of that we consider. (In
this particular example smaller values of can yield higher total
throughput when is small.) The result is a throughput that
grows approximately logarithmically with , as predicted theo-
retically. The figure also shows that choosing a that is constant
has a detrimental effect on the throughput. Similarly, choosing
a that grows faster than logarithmically would also be detri-
mental.

Fig. 8 shows the aggregate throughput and minimum SINR
of the decay-density network (as a function of ) described in
Section VIII-B. The parameters used in the simulation are

, , and . This is equivalent to placing nodes
with unit spacing in a two-dimensional lattice and assuming a
power-decay that decreases as . The figure shows that the
throughput grows approximately linearly, as predicted by (20).

These simulations show that Theorem 1, although designed
for large , is also an accurate predictor for finite .

C. Conclusion

Our model for shared-medium wireless networks uses chan-
nels chosen according to a common distribution. We have de-
vised a method of operating this network using relays and pro-
vided an achievable aggregate throughput as a function of the
distribution. Distributions that have a certain sparsity of “good”
connections seem to fare best and provide near-linear through-
puts. We show that there exists an optimum amount of shadow
fading that a network should have—any more or any less de-
grades the throughput. We hope that these results provide guide-
lines to the design of networks including, paradoxically, pos-
sible obstacle placement if the network is “over-connected.”

We have given a brief description of an upper bound on the
achievable throughput. We do not generally know how sensitive
our throughput results are to relaxing the i.i.d. assumption on
the channel coefficients. A case where the channel coefficients
are independent but have distribution that depends on distance
was examined in Section VIII, where we argued that at the low
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connection probabilities that we require, the sensitivity to dis-
tance was low. It remains to be seen whether this sensitivity is
low more generally.

More practical issues remain to be addressed. For instance,
the scheduling algorithm used in the simulations requires cen-
tralized knowledge of the channel connections. In a practical
network we would expect sources and destinations to have
knowledge of their own connections and determine suitable
relaying paths. Ideally, we would then like the network to
generate a noncolliding schedule in a decentralized manner.
Another issue of interest is that of modeling a network that has
both randomness and geometric distance decay laws. One such
model is proposed in [28].
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