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We consider the problem of designing an optimal quantum detector that distinguishes unambigu-
ously between a collection of mixed quantum states. Using arguments of duality in vector space
optimization, we derive necessary and sufficient conditions for an optimal measurement that maxi-
mizes the probability of correct detection. We show that the previous optimal measurements that
were derived for certain special cases satisfy these optimality conditions. We then consider state
sets with strong symmetry properties, and show that the optimal measurement operators for dis-
tinguishing between these states share the same symmetries, and can be computed very efficiently
by solving a reduced size semidefinite program.
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I. INTRODUCTION

The problem of detecting information stored in the
state of a quantum system is a fundamental problem in
quantum information theory. Several approaches have
emerged to distinguishing between a collection of non-
orthogonal quantum states. In one approach, a mea-
surement is designed to maximize the probability of cor-
rect detection [1, 2, 3, 4, 5, 6, 7, 7, 8, 9]. A more
recent approach, referred to as unambiguous detection
[10, 11, 12, 13, 14, 15, 16, 17, 18], is to design a measure-
ment that with a certain probability returns an incon-
clusive result, but such that if the measurement returns
an answer, then the answer is correct with probability
1. An interesting alternative approach for distinguishing
between a collection of quantum states, which is a com-
bination of the previous two approaches, is to allow for
a certain probability of an inconclusive result, and then
maximize the probability of correct detection [18, 19, 20].

We consider a quantum state ensemble consisting of m
density operators {ρi, 1 ≤ i ≤ m} on an n-dimensional
complex Hilbert space H, with prior probabilities {pi >
0, 1 ≤ i ≤ m}. A pure-state ensemble is one in which
each density operator ρi is a rank-one projector |φi〉〈φi|,
where the vectors |φi〉, though evidently normalized to
unit length, are not necessarily orthogonal. Our problem
is to design a quantum detector to distinguish unambigu-
ously between the states {ρi}.

Chefles [15] showed that a necessary and sufficient con-
dition for the existence of unambiguous measurements
for distinguishing between a collection of pure quantum
states is that the states are linearly independent. Nec-
essary and sufficient conditions on the optimal measure-
ment minimizing the probability of an inconclusive result
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for pure states were derived in [17]. The optimal mea-
surement when distinguishing between a broad class of
symmetric pure-state sets was also considered in [17].

The problem of unambiguous detection between mixed

state ensembles has received considerably less attention.
Rudolph et al. [21] showed that unambiguous detection
between mixed quantum states is possible as long as one
of the density operators in the ensemble has a non-zero
overlap with the intersection of the kernels of the other
density operators. They then consider the problem of un-
ambiguous detection between two mixed quantum states,
and derive upper and lower bounds on the probability of
an inconclusive result. They also develop a closed form
solution for the optimal measurement in the case in which
both states have kernels of dimension 1.

In this paper we develop a general framework for un-
ambiguous state discrimination between a collection of
mixed quantum states, which can be applied to any
number of states with arbitrary prior probabilities. For
our measurement we consider general positive operator-
valued measures [2, 22], consisting of m+1 measurement
operators. We derive a set of necessary and sufficient
conditions for an optimal measurement that minimizes
the probability of an inconclusive result, by exploiting
principles of duality theory in vector space optimization.
We then show that the previous optimal measurements
that were derived for certain special cases satisfy these
optimality conditions.

Next, we consider geometrically uniform (GU) and
compound GU state sets [7, 8, 23], which are state sets
with strong symmetry properties. We show that the op-
timal measurement operators for unambiguous discrim-
ination between such state sets are also GU and CGU
respectively, with generators that can be computed very
efficiently by solving a reduced size semidefinite program.

The paper is organized as follows. In Section II, we
provide a statement of our problem. In Section III we de-
velop the necessary and sufficient conditions for optimal-
ity using Lagrange duality theory. Some special cases are

mailto:yonina@ee.technion.ac.il
mailto:{mihailo,hassibi}@systems.caltech.edu


2

considered in Section IV. In Section V we consider the
problem of distinguishing between a collection of states
with a broad class of symmetry properties.

II. PROBLEM FORMULATION

Assume that a quantum channel is prepared in a quan-
tum state drawn from a collection of mixed states, rep-
resented by density operators {ρi, 1 ≤ i ≤ m} on an n-
dimensional complex Hilbert space H. We assume with-
out loss of generality that the eigenvectors of ρi, 1 ≤ i ≤
m, collectively span[31] H.

To detect the state of the system a measurement is
constructed comprising m + 1 measurement operators
{Πi, 0 ≤ i ≤ m} that satisfy

Πi ≥ 0, 0 ≤ i ≤ m;
∑m

i=0 Πi = I. (1)

The measurement operators are constructed so that ei-
ther the state is correctly detected, or the measurement
returns an inconclusive result. Thus, each of the opera-
tors Πi, 1 ≤ i ≤ m correspond to detection of the corre-
sponding states ρi, 1 ≤ i ≤ m, and Π0 corresponds to an
inconclusive result.

Given that the state of the system is ρj , the proba-
bility of obtaining outcome i is Tr(ρjΠi). Therefore, to
ensure that each state is either correctly detected or an
inconclusive result is obtained, we must have

Tr(ρjΠi) = ηiδij , 1 ≤ i, j ≤ m, (2)

for some 0 ≤ ηi ≤ 1. Since from (1), Π0 = I −∑m

i=1 Πi,
(2) implies that Tr(ρiΠ0) = 1− ηi, so that given that the
state of the system is ρi, the state is correctly detected
with probability ηi, and an inconclusive result is returned
with probability 1 − ηi.

It was shown in [15] that for pure-state ensembles con-
sisting of rank-one density operators ρi = |φi〉〈φi|, (2)
can be satisfied if and only if the vectors |φi〉 are linearly
independent. For mixed states, it was shown in [21] that
(2) can be satisfied if and only if one of the density op-
erators ρi has a non-zero overlap with the intersection of
the kernels of the other density operators. Specifically,
denote by Ki the null space of ρi and let

Si = ∩m
j=1,j 6=iKj (3)

denote the intersection of Kj , 1 ≤ j ≤ m, j 6= i. Then
to satisfy (2) the eigenvectors of Πi must be contained
in Si and must not be entirely contained in Ki. This
implies that Ki must not be entirely contained in Si.
Some examples of mixed states for which unambiguous
detection is possible are given in [21].

If the state ρi is prepared with prior probability pi,
then the total probability of correctly detecting the state
is

PD =

m∑

i=1

piTr(ρiΠi). (4)

Our problem therefore is to choose the measurement op-
erators Πi, 0 ≤ i ≤ m to maximize PD, subject to the
constraints (1) and

Tr(ρjΠi) = 0, 1 ≤ i, j ≤ m, i 6= j. (5)

To satisfy (5), Πi must lie in Si defined by (3), so that

Πi = PiΠiPi, 1 ≤ i ≤ m, (6)

where Pi is the orthogonal projection onto Si. Denoting
by Θi an n × r matrix whose columns form an arbitrary
orthonormal basis for Si, where r = dim(Si), we can
express Pi as Pi = ΘiΘ

∗
i . From (6) and (1) we then have

that

Πi = Θi∆iΘ
∗
i , 1 ≤ i ≤ m, (7)

where ∆i = Θ∗
i ΠiΘi is an r × r matrix satisfying

∆i ≥ 0, 1 ≤ i ≤ m;
∑m

i=1 Θi∆iΘ
∗
i ≤ I. (8)

Therefore, our problem reduces to maximizing

PD =

m∑

i=1

piTr(ρiΘi∆iΘ
∗
i ), (9)

subject to (8).
To show that the problem of (9) and (8) does not de-

pend on the choice of orthonormal basis Θi, we note that
any orthonormal basis for Si can be expressed as the
columns of Ψi, where Ψi = ΘiUi for some r × r unitary
matrix Ui. Substituting Ψi instead of Θi in (9) and (8),
our problem becomes that of maximizing

PD =
m∑

i=1

piTr(ρiΨi∆iΨ
∗
i ) =

m∑

i=1

piTr(ρiΘi∆
′
iΘ

∗
i ), (10)

where ∆′
i = Ui∆iU

∗
i , subject to

∆i ≥ 0, 1 ≤ i ≤ m;
∑m

i=1 Ψi∆iΨ
∗
i =

∑m

i=1 Θi∆
′
iΘ

∗
i ≤ I. (11)

Since ∆i ≥ 0 if and only if ∆′
i ≥ 0, the problem of (10)

and (11) is equivalent to that of (9) and (8).
Equipped with the standard operations of addition and

multiplication by real numbers, the space B of all Hermi-
tian n×n matrices is an n2-dimensional real vector space.
As noted in [21], by choosing an appropriate basis for B,
the problem of maximizing PD subject to (8) can be put
in the form of a standard semidefinite programming prob-
lem, which is a convex optimization problem; for a de-
tailed treatment of semidefinite programming problems
see, e.g., [24, 25, 26, 27]. By exploiting the many well
known algorithms for solving semidefinite programs [27],
e.g., interior point methods[32] [24, 26], the optimal mea-
surement can be computed very efficiently in polynomial
time within any desired accuracy.

Using elements of duality theory in vector space op-
timization, in the next section we derive necessary and
sufficient conditions on the measurement operators Πi =
Θi∆iΘ

∗
i to maximize PD of (9) subject to (8).
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III. CONDITIONS FOR OPTIMALITY

A. Dual Problem Formulation

To derive necessary and sufficient conditions for opti-
mality on the matrices ∆i we first derive a dual problem,
using Lagrange duality theory [28].

Denote by Λ the set of all ordered sets Π =
{Πi = Θi∆iΘ

∗
i }m

i=1 satisfying (8) and define J(Π) =∑m

i=1 piTr(ρiΘi∆iΘ
∗
i ). Then our problem is

max
Π∈Λ

J(Π). (12)

We refer to this problem as the primal problem, and to
any Π ∈ Λ as a primal feasible point. The optimal value

of J(Π) is denoted by Ĵ .
To develop the dual problem associated with (12) we

first compute the Lagrange dual function, which is given
by

g(Z) =

= min
∆i≥0

{
−

m∑

i=1

piTr(ρiΘi∆iΘ
∗
i ) +

+ Tr

(
Z

(
m∑

i=0

Θi∆iΘ
∗
i − I

))}

= min
∆i≥0

{
m∑

i=1

Tr (∆iΘ
∗
i (Z − piρi)Θi) − Tr(Z)

}
, (13)

where Z ≥ 0 is the Lagrange dual variable. Since
∆i ≥ 0, 1 ≤ i ≤ m, we have that Tr(∆iX) ≥ 0 for
any X ≥ 0. If X is not positive semidefinite, then we
can always choose ∆i such that Tr(∆iX) is unbounded
below. Therefore,

g(Z) =

{
−Tr(Z), Ai ≥ 0, 1 ≤ i ≤ m, Z ≥ 0;
−∞, otherwise,

(14)

where

Ai = Θ∗
i (Z − piρi)Θi, 1 ≤ i ≤ m. (15)

It follows that the dual problem associated with (12) is

min
Z

Tr(Z) (16)

subject to

Θ∗
i (Z − piρi)Θi ≥ 0, 1 ≤ i ≤ m;

Z ≥ 0. (17)

Denoting by Γ the set of all Hermitian operators Z such
that Θ∗

i (Z − piρi)Θi ≥ 0, 1 ≤ i ≤ m and Z ≥ 0, and
defining T (Z) = Tr(Z), the dual problem can be written
as

min
Z∈Γ

T (Z). (18)

We refer to any Z ∈ Γ as a dual feasible point. The

optimal value of T (Z) is denoted by T̂ .

B. Optimality Conditions

We can immediately verify that both the primal and
the dual problem are strictly feasible. Therefore, their
optimal values are attainable and the duality gap is zero
[27], i.e.,

Ĵ = T̂ . (19)

In addition, for any Π = {Πi = Θi∆iΘ
∗
i }m

i=1 ∈ Λ and
Z ∈ Γ,

T (Z)− J(Π) =

= Tr

(
m∑

i=1

Θi∆iΘ
∗
i (Z − piρi) + Π0Z

)

≥ 0, (20)

where Π0 = I −
∑m

i=1 Θi∆iΘ
∗
i ≥ 0. Note, that (20)

can be used to develop an upper bound on the optimal

probability of correct detection Ĵ . Indeed, since for any

Z ∈ Γ, T (Z) ≥ J(Π), we have that Ĵ ≤ T (Z) for any
dual feasible Z.

Now, let Π̂i = Θi∆̂iΘ
∗
i , 1 ≤ i ≤ m and Π̂0 = I −∑m

i=1 Π̂i denote the optimal measurement operators that

maximize (9) subject to (8), and let Ẑ denote the optimal
Z that minimizes (16) subject to (17). From (19) and
(20) we conclude that

Tr

(
m∑

i=1

Π̂iΘ
∗
i (Ẑ − piρi)Θi + Π̂0Ẑ

)
= 0. (21)

Since ∆̂i ≥ 0, Ẑ ≥ 0 and Θ∗
i (Ẑ − piρi)Θi ≥ 0, 1 ≤ i ≤ m,

(21) is satisfied if and only if

ẐΠ̂0 = 0 (22)

Θ∗
i (Ẑ − piρi)Θi∆̂i = 0, 1 ≤ i ≤ m. (23)

Once we find the optimal Ẑ that minimizes the dual
problem (16), the constraints (22) and (23) are nec-
essary and sufficient conditions on the optimal mea-

surement operators Π̂i. We have already seen that
these conditions are necessary. To show that they
are sufficient, we note that if a set of feasible mea-

surement operators Π̂i satisfies (22) and (23), then

Tr
(∑m

i=1 ∆̂iΘ
∗
i (Ẑ − piρi)Θi + Π̂0Ẑ

)
= 0 so that from

(20), J(Π̂) = T (Ẑ) = Ĵ .
We summarize our results in the following theorem:

Theorem 1. Let {ρi, 1 ≤ i ≤ m} denote a set of density

operators with prior probabilities {pi > 0, 1 ≤ i ≤ m},
and let {Θi, 1 ≤ i ≤ m} denote a set of matrices such

that the columns of Θi form an orthonormal basis for

Si = ∩m
j=1,j 6=iKj , where Ki the null space of ρi. Let

Λ denote the set of all ordered sets of Hermitian mea-

surement operators Π = {Πi}m
i=0 that satisfy Πi ≥ 0,
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∑m

i=0 Πi = I, and Tr(ρjΠi) = 0, 1 ≤ i ≤ m, i 6= j and

let Γ denote the set of Hermitian matrices Z such that

Z ≥ 0, Θ∗
i (Z−piρi)Θi, 1 ≤ i ≤ m. Consider the problem

maxΠ∈Λ J(Π) and the dual problem minZ∈Γ T (Z), where

J(Π) =
∑m

i=1 piTr(ρiΠi) and T (Z) = Tr(Z). Then

1. For any Z ∈ Γ and Π ∈ Λ, T (Z) ≥ J(Π).

2. There is an optimal Π, denoted Π̂, such that Ĵ =

J(Π̂) ≥ J(Π) for any Π ∈ Λ;

3. There is an optimal Z, denoted Ẑ and such that

T̂ = T (Ẑ) ≤ T (Z) for any Z ∈ Γ;

4. T̂ = Ĵ ;

5. Necessary and sufficient conditions on the optimal

measurement operators Π̂i are that there exists a

Z ∈ Γ such that

ZΠ̂0 = 0 (24)

Θ∗
i (Z − piρ)Θi∆̂i = 0, 1 ≤ i ≤ m, (25)

where Π̂i = Θi∆̂iΘ
∗
i , 1 ≤ i ≤ m, and ∆̂i ≥ 0.

6. Given Ẑ, necessary and sufficient conditions on the

optimal measurement operators Π̂i are

ẐΠ̂0 = 0 (26)

Θ∗
i (Ẑ − piρi)Θi∆̂i = 0, 1 ≤ i ≤ m. (27)

Although the necessary and sufficient conditions of
Theorem 1 are hard to solve, they can be used to ver-
ify a solution and to gain some insight into the optimal
measurement operators. In the next section we show that
the previous optimal measurements that were derived in
the literature for certain special cases satisfy these opti-
mality conditions.

IV. SPECIAL CASES

We now consider two special cases that where ad-
dressed in [21], for which a closed form solution exists. In
Section IVA we consider the case in which the spaces Si

defined by (3) are orthogonal, and in Section IVB we con-
sider the problem of distinguishing unambiguously be-
tween two density operators with dim(Si) = 1, 1 ≤ i ≤ 2.

A. Orthogonal Null Spaces Si

The first case we consider is the case in which the null
spaces Si are orthogonal, so that

PiPj = δij , 1 ≤ i, j,≤ m, (28)

where Pi is an orthogonal projection onto Si. It was
shown in [21] that in this case the optimal measurement
operators are

Π̂i = Pi = ΘiΘ
∗
i , 1 ≤ i ≤ m. (29)

In Appendix A we show that the optimal solution of the
dual problem can be expressed as

Ẑ =

m∑

i=1

piPiρiPi. (30)

It can easily be shown that Ẑ and Π̂i of (30) and (29)
satisfy the optimality conditions of Theorem 1.

B. Null Spaces of Dimension 1

We now consider the case of distinguishing between
two density operators ρ1 and ρ2, where S1 and S2 both
have dimension equal to 1. In this case, as we show in
Appendix B, the optimal dual solution is

Ẑ =






d1P1, d2 − d1|f |2 ≤ 0;

d2P2, d1 − d2|f |2 ≤ 0;

d2(Θ2 + sΘ⊥
2 )(Θ2 + sΘ⊥

2 )∗, otherwise,

(31)
where Pi is an orthogonal projection onto Si, Θ⊥

2 is a
unit norm vector in the span of Θ1 and Θ2 such that
Θ∗

2Θ
⊥
2 = 0, and

di = piΘ
∗
i ρiΘi, 1 ≤ i ≤ 2;

s = f∗

e∗

(√
d1

d2|f |2
− 1
)

;

f = Θ∗
2Θ1;

e = (Θ⊥
2 )∗Θ1. (32)

The optimal measurement operators for this case were
developed in [21], and can be written as

{Π̂i}2
i=1 =






Π̂1 = P1, Π̂2 = 0, d2 − d1|f |2 ≤ 0;

Π̂1 = 0, Π̂2 = P2, d1 − d2|f |2 ≤ 0;

Π̂1 = α1P1, Π̂2 = α2P2, otherwise,

(33)
where

α1 =
1−

√
d2|f|2

d1

1−|f |2 ;

α2 =
1−

√
d1|f|2

d2

1−|f |2 . (34)

We now show that Ẑ and Π̂ of (31) and (33) satisfy
the optimality conditions of Theorem 1. To this end we
note that from (33),

{∆̂i}2
i=1 =






∆̂1 = 1, ∆̂2 = 0, d2 − d1|f |2 ≤ 0;

∆̂1 = 0, ∆̂2 = 1, d1 − d2|f |2 ≤ 0;

∆̂1 = α1, ∆̂2 = α2, otherwise.

(35)
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From (31)–(35) we have that if d2 − d1|f |2 ≤ 0, then

Θ∗
1(Ẑ − p1ρ1)Θ1∆̂1 = d1 − Θ∗

1p1ρ1Θ1 = 0;

Θ∗
2(Ẑ − p2ρ2)Θ2∆̂2 = 0;

ẐΠ̂0 = Ẑ(I − Π̂1) = d1Θ1Θ
∗
1 − d1Θ1Θ

∗
1 = 0. (36)

Similarly, if d1 − d2|f |2 ≤ 0, then

Θ∗
1(Ẑ − p1ρ1)Θ1∆̂1 = 0;

Θ∗
2(Ẑ − p2ρ2)Θ2∆̂2 = d2 − Θ∗

2p2ρ2Θ2 = 0;

ẐΠ̂0 = Ẑ(I − Π̂2) = d2Θ2Θ
∗
2 − d2Θ2Θ

∗
2 = 0. (37)

Finally, if neither of the conditions d1 − d2|f |2 ≤ 0, d2 −
d1|f |2 ≤ 0 hold, then

Θ∗
1(Ẑ − p1ρ1)Θ1∆̂1 =

= (d2(f
∗ + e∗s)(f∗ + e∗s)∗ − d1)

1 −
√

d2|f |2

d1

1 − |f |2

=



d2|f |2
(√

d1

d2|f |2

)2

− d1




1 −

√
d2|f |2

d1

1 − |f |2

= 0, (38)

Θ∗
2(Ẑ − p2ρ2)Θ2∆̂2 = (Θ∗

2ẐΘ2 − d2)
1 −

√
d1|f |2

d2

1 − |f |2
= 0, (39)

and

ẐΠ̂0 = Ẑ − ẐΠ̂1 − ẐΠ̂2

= Ẑ − ∆̂1ẐΘ1Θ
∗
1 − ∆̂2ẐΘ2Θ

∗
2. (40)

To show that ẐΠ̂0 = 0, we note that

ẐΘ1Θ
∗
1 = d2(|f |2 + s∗ef∗)Θ2Θ

∗
2

+ d2(s|f |2 + ss∗ef∗)Θ⊥
2 Θ∗

2

+ d2(e
∗f + s∗|e|2)Θ2Θ

⊥∗
2

+ d2(se
∗f + ss∗|e|2)Θ⊥

2 Θ⊥∗
2 , (41)

and

ẐΘ2Θ
∗
2 = d2Θ2Θ

∗
2 + d2sΘ

⊥
2 Θ∗

2. (42)

Substituting (41) and (42) into (40), and after some al-
gebraic manipulations, we have that

ẐΠ̂0 = Ẑ − ∆̂1ẐΘ1Θ
∗
1 − ∆̂2ẐΘ2Θ

∗
2 = 0. (43)

Combining (36)–(43) we conclude that the optimal mea-
surement operators of [21] satisfy the optimality condi-
tions of Theorem 1.

V. OPTIMAL DETECTION OF SYMMETRIC
STATES

We now consider the case in which the quantum state
ensemble has symmetry properties referred to as geomet-
ric uniformity (GU) and compound geometric uniformity
(CGU). These symmetry properties are quite general,
and include many cases of practical interest.

Under a variety of different optimality criteria the op-
timal measurement for distinguishing between GU and
CGU state sets was shown to be GU and CGU respec-
tively [7, 8, 17, 18]. In particular it was shown in [17] that
the optimal measurement for unambiguous detection be-
tween linearly independent GU and CGU pure-states is
GU and CGU respectively. We now generalize this result
to unambiguous detection of mixed GU and CGU state
sets.

VI. GU STATE SETS

A GU state set is defined as a set of density operators
{ρi, 1 ≤ i ≤ m} such that ρi = UiρU∗

i where ρ is an
arbitrary generating operator and the matrices {Ui, 1 ≤
i ≤ m} are unitary and form an abelian group G [8, 29].
For concreteness, we assume that U1 = I. The group
G is the generating group of S. For consistency with
the symmetry of S, we will assume equiprobable prior
probabilities on S.

As we now show, the optimal measurement operators
that maximize the probability of correct detection when
distinguishing unambiguously between the density oper-
ators of a GU state set are also GU with the same gen-
erating group. The corresponding generator can be com-
puted very efficiently in polynomial time.

Suppose that the optimal measurement operators that
maximize

J({Πi}) =
m∑

i=1

Tr(ρiΠi) (44)

subject to (8) and (5) are Π̂i, and let Ĵ = J({Π̂i}) =∑m

i=1 Tr(ρiΠ̂i). Let r(j, i) be the mapping from I×I to I
with I = {1, . . . , m}, defined by r(j, i) = k if U∗

j Ui = Uk.

Then the measurement operators Π̂
(j)
i = UjΠ̂r(j,i)U

∗
j and

Π̂
(j)
0 = I−∑m

i=1 Π̂
(j)
i for any 1 ≤ j ≤ m are also optimal.

Indeed, since Π̂i ≥ 0, 1 ≤ i ≤ m and
∑m

i=1 Π̂i ≤ I,

Π̂
(j)
i ≥ 0, 1 ≤ i ≤ m and

m∑

i=1

Π̂
(j)
i = Uj

(
m∑

i=1

Π̂i

)
U∗

j ≤ UjU
∗
j = I. (45)
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Using the fact that ρi = UiρU∗
i for some generator ρ,

J({Π̂(j)
i }) =

m∑

i=1

Tr(ρU∗
i UjΠ̂r(j,i)U

∗
j Ui)

=

m∑

k=1

Tr(ρU∗
k Π̂kUk)

=

m∑

i=1

Tr(ρiΠ̂i)

= Ĵ . (46)

Finally, for l 6= i,

Tr
(
ρlΠ̂

(j)
i

)
= Tr

(
UlρU∗

l UjΠ̂r(j,i)U
∗
j

)

= Tr
(
UsρU∗

s Π̂r(j,i)

)

= Tr
(
ρsΠ̂k

)

= 0, (47)

where Us = U∗
j Ul and Uk = U∗

j Ui and the last equality
follows from the fact that since l 6= i, s 6= k.

It was shown in [8, 18] that if the measurement

operators Π̂
(j)
i are optimal for any j, then {Πi =

(1/m)
∑m

j=1 Π̂
(j)
i , 1 ≤ i ≤ m} and Π0 = I −

∑m

i=1 Πi

are also optimal. Furthermore, Πi = UiΠ̂U∗
i where

Π̂ = (1/m)
∑m

k=1 U∗
k Π̂kUk.

We therefore conclude that the optimal measurement
operators can always be chosen to be GU with the same
generating group G as the original state set. Thus, to
find the optimal measurement operators all we need is to

find the optimal generator Π̂. The remaining operators

are obtained by applying the group G to Π̂.
Since the optimal measurement operators satisfy Πi =

UiΠU∗
i , 1 ≤ i ≤ m and ρi = UiρU∗

i , Tr(ρiΠi) = Tr(ρΠ),
so that the problem (9) reduces to the maximization
problem

max
Π∈B

Tr(ρΠ), (48)

where B is the set of n× n Hermitian operators, subject
to the constraints

Π ≥ 0;
∑m

i=1 UiΠU∗
i ≤ I;

Tr(Πρi) = 0, 2 ≤ i ≤ m. (49)

The problem of (48) and (49) is a (convex) semidefinite
programming problem, and therefore the optimal Π can
be computed very efficiently in polynomial time within
any desired accuracy [24, 26, 27], for example using the
LMI toolbox on Matlab. Note that the problem of (48)
and (49) has n2 real unknowns and m + 1 constraints,
in contrast with the original maximization problem (9)
subject to (8) and (5) which has mn2 real unknowns and
m2 + 1 constraints.

VII. CGU STATE SETS

A CGU state set is defined as a set density operators
{ρik, 1 ≤ i ≤ l, 1 ≤ k ≤ r} such that ρik = UiφkU∗

i for
some generating density operators {ρk, 1 ≤ k ≤ r}, where
the matrices {Ui, 1 ≤ i ≤ l} are unitary and form an
abelian group G [8, 23]. A CGU state set is in general not
GU. However, for every k, the operators {ρik, 1 ≤ i ≤ l}
are GU with generating group G.

Using arguments similar to hose of Section VI and [18]
we can show that the optimal measurement operators
corresponding to a CGU state set can always be chosen
to be GU with the same generating group G as the orig-
inal state set. Thus, to find the optimal measurement
operators all we need is to find the optimal generators

Π̂k. The remaining operators are obtained by applying

the group G to each of the generators Π̂k.
Since the optimal measurement operators satisfy Πik =

UiΠkU∗
i , 1 ≤ i ≤ l, 1 ≤ k ≤ r and ρik = UiρkU∗

i ,
Tr(ρikΠik) = Tr(ρkΠk), so that the problem (9) reduces
to the maximization problem

max
Πk∈B

r∑

k=1

Tr(ρkΠk), (50)

subject to the constraints

Πk ≥ 0, 1 ≤ k ≤ r;
∑l

i=1

∑r
k=1 UikΠkU∗

ik ≤ I;

Tr(Πkρik) = 0, 1 ≤ k ≤ r, 2 ≤ i ≤ l. (51)

Since this problem is a (convex) semidefinite program-
ming problem, the optimal generators Πk can be com-
puted very efficiently in polynomial time within any de-
sired accuracy [24, 26, 27]. Note that the problem of (50)
and (51) has rn2 real unknowns and lr+1 constraints, in
contrast with the original maximization which has lrn2

real unknowns and (lr)2 + 1 constraints.

VIII. CONCLUSION

We considered the problem of distinguishing unam-
biguously between a collection of mixed quantum states.
Using elements of duality theory in vector space opti-
mization, we derived a set of necessary and sufficient
conditions on the optimal measurement operators. We
then considered some special cases for which closed form
solutions are known, and showed that they satisfy our op-
timality conditions. We also showed that in the case in
which the states to be distinguished have strong symme-
try properties, the optimal measurement operators have
the same symmetries, and can be determined efficiently
by solving a semidefinite programming problem.

An interesting future direction to pursue is to use the
optimality conditions we developed in this paper to de-
rive closed form solutions for other special cases.
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APPENDIX A: PROOF OF (30)

To develop the optimal dual solution in the case of
orthogonal null spaces, let Θ =

[
Θ1 Θ2 ... Θm

]
, and

define a matrix Θ⊥ such that
[
Θ Θ⊥

]
is a square, uni-

tary matrix, i.e.,
[
Θ Θ⊥

]∗ [
Θ Θ⊥

]
= I. Denoting

Z =
[
Θ Θ⊥

]
Y
[
Θ Θ⊥

]∗
, the dual problem can be ex-

pressed as

min
Y

Tr
([

Θ Θ⊥
]
Y
[
Θ Θ⊥

]∗)
(A1)

subject to

Θ∗
i

[
Θ Θ⊥

]
Y
[
Θ Θ⊥

]∗
Θi ≥ Θ∗

i piρiΘi, 1 ≤ i ≤ m;

Y ≥ 0. (A2)

Using the orthogonality properties of Θi and Θ⊥, the
problem of (A1) and (A2) is equivalent to

min
Y

Tr(Y ) (A3)

subject to

Yi ≥ Θ∗
i piρiΘi, 1 ≤ i ≤ m;

Y ≥ 0, (A4)

where

Y =





Y1

Y2

. . .
Ym

0




. (A5)

Since Tr(Y ) =
∑m

i=1 Tr(Yi), a solution to (A3) subject
to (A4) is

Ŷ =





Ŷ1

Ŷ2

. . .

Ŷm

0




, (A6)

where

Ŷi = Θ∗
i piρiΘi, 1 ≤ i ≤ m. (A7)

Then,

Ẑ =
[
Θ Θ⊥

]
Ŷ
[
Θ Θ⊥

]∗
=

m∑

i=1

piPiρiPi, (A8)

as in (30).

APPENDIX B: PROOF OF (31)

To develop the optimal dual solution Ẑ for one-

dimensional null spaces, we note that Ẑ lies in the space
spanned by Θ1 and Θ2. Denoting by Θ a matrix whose

columns represent an orthonormal basis for this space, Ẑ

can be written as Ẑ = ΘŶ Θ∗, where the 2 × 2 matrix Ŷ
is the solution to

min
Y

Tr(Y ) (B1)

subject to

Φ∗
1Y Φ1 ≥ d1; (B2)

Φ∗
2Y Φ2 ≥ d2; (B3)

Y ≥ 0. (B4)

Here Φi = Θ∗Θi and di = piΘ
∗
i ρiΘi for 1 ≤ i ≤ 2.

To develop a solution to (B1) subject to (B2)–(B4), we
form the Lagrangian

L = Tr(Y ) −
2∑

i=1

γi(Φ
∗
i Y Φi − di) − Tr(XY ), (B5)

where from the Karush-Kuhn-Tucker (KKT) conditions
[30] we must have that γi ≥ 0, X ≥ 0, and

γi(Φ
∗
i Y Φi − di) = 0, i = 1, 2; (B6)

Tr(XY ) = 0. (B7)

Differentiating L with respect to Y and equating to zero,

I −
2∑

i=1

γiΦiΦ
∗
i − X = 0. (B8)

If X = 0, then we must have that I =
∑2

i=1 γiΦiΦ
∗
i ,

which is possible only if Φ1 and Φ2 are orthogonal.
Therefore, X 6= 0, which implies from (B7) that (B4)
is active. Now, suppose that only (B4) is active. In this
case our problem reduces to minimizing Tr(y∗y) whose
optimal solution is y = 0, which does not satisfy (B2)
and (B3).

We conclude that at the optimal solution (B4) and at
least one of the constraints (B2) and (B3) are active.
Thus, to determine the optimal solution we need to de-
termine the solutions under each of the 3 possibilities:
only (B2) is active, only (B3) is active, both (B2) and
(B3) are active, and then choose the solution with the
smallest objective.

Consider first the case in which (B2) and (B4) are ac-

tive. In this case, Ŷ = ŷŷ∗ for some vector ŷ, and without
loss of generality we can assume that

Φ∗
1ŷ = d1. (B9)

To satisfy (B9), ŷ must have the form

ŷ =
√

d1Φ1 + ŝΦ⊥
1 , (B10)
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where Φ⊥
1 is a unit norm vector orthogonal to Φ1, so that

Φ∗
1Φ

⊥
1 = 0, and ŝ is chosen to minimize Tr(Ŷ ). Since,

Tr(Ŷ ) = ŷ∗ŷ = d1 + |ŝ|2, (B11)

ŝ = 0. Thus, Ŷ = d1Φ1Φ
∗
1, and Tr(Ŷ ) = d1. This

solution is valid only if (B3) is satisfied, i.e., only if

Φ∗
2Ŷ Φ2 = d1|f |2 ≥ d2. (B12)

Here we used the fact that

Φ∗
2Φ1 = Θ∗

2ΘΘ∗Θ1 = Θ∗
2Θ1 = f, (B13)

since ΘΘ∗ is an orthogonal projection onto the space
spanned by Θ1 and Θ2.

Next, suppose that (B3) and (B4) are active. In this

case, Ŷ = ŷŷ∗ where without loss of generality we can
choose ŷ such that

Φ∗
2ŷ = d2, (B14)

and

ŷ =
√

d2Φ2 + ŝΦ⊥
2 , (B15)

where Φ⊥
2 is a unit norm vector orthogonal to Φ2, and

ŝ is chosen to minimize Tr(Ŷ ). Since Tr(Ŷ ) = d2 + |ŝ|2,
ŝ = 0, and Tr(Ŷ ) = d2. This solution is valid only if (B2)
is satisfied, i.e.,

Φ∗
1Y Φ1 = d2|f |2 ≥ d1. (B16)

Finally, consider the case in which (B2)–(B4) are ac-
tive. In this case, we can assume without loss of gener-
ality that Φ∗

2ŷ =
√

d2. Then,

ŷ =
√

d2Φ2 + ŝΦ⊥
2 , (B17)

where ŝ is chosen such that

Φ∗
1Ŷ Φ1 = d1, (B18)

and Tr(Ŷ ) = ŷ∗ŷ is minimized. Now, for ŷ given by
(B17),

Ŷ = d2Φ2Φ
∗
2 + |ŝ|2Φ⊥

2 Φ⊥∗
2 +

+ŝ
√

d2Φ
⊥
2 Φ∗

2 + ŝ∗
√

d2Φ2Φ
⊥∗
2 , (B19)

so that

Φ∗
1Ŷ Φ1 = d2|f |2 + |ŝ|2|e|2 +

√
d2ŝe

∗f +
√

d2ŝ
∗f∗e

= |
√

d2f + ŝ∗e|2, (B20)

where we defined Θ⊥
2 = ΘΨ⊥

2 , and e and f are given by
(32). Therefore, to satisfy (B18), ŝ must be of the form

ŝ =
1

e∗

(
ejϕ
√

d1 − f∗
√

d2

)
, (B21)

for some ϕ. The problem of (B1) then becomes

min
ϕ

1

|e|2
∣∣∣ejϕ

√
d1 − f∗

√
d2

∣∣∣
2

, (B22)

which is equivalent to

max
ϕ

ℜ
{
ejϕf

}
. (B23)

Since

ℜ
{
ejϕf

}
≤
∣∣ejϕf

∣∣ = |f |, (B24)

the optimal choice of ϕ is ejϕ = f∗/|f |, and

ŝ =
f∗

√
d2

e∗

( √
d1√

d2|f |
− 1

)
. (B25)

For this choice of ŝ,

Tr(Ŷ ) = d2 + |ŝ|2

= d2

(
1 +

|f |2
|e|2

( √
d1√

d2|f |
− 1

)2
)

△
= α. (B26)

Clearly, α ≥ d2. Therefore, to complete the proof of
(31) we need to show that α ≥ d1. Now,

|e|2(α − d1) =

= |e|2(d2 − d1) + |f |2
(√

d1

|f | −
√

d2

)2

= (1 − |e|2)d1 + (|e|2 + |f |2)d2 − 2
√

d1

√
d2|f |

= (|f |
√

d1 −
√

d2)
2

≥ 0, (B27)

where we used the fact that

|e|2 + |f |2 = Θ∗
1Θ2Θ

∗
2Θ1 + Θ∗

1Θ
⊥
2 (Θ⊥

2 )∗Θ1

= Θ∗
1Θ1 = 1, (B28)

since Θ2Θ
∗
2 + Θ⊥

2 (Θ⊥
2 )∗ is an orthogonal projection onto

the space spanned by Θ1 and Θ2.
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