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Abstract

In many problems in wireline networks, it is known that achieving capacity on each
link or sub-network is optimal for the entire network operation. In this paper we show
that achieving capacity on the sub-networks of a wireless network does not guarantee
achieving the capacity of the entire network. This implies that operating wireless
networks in a multi-hop manner, where each relay node decodes what it receives is
not necessarily the right approach. We demonstrate this with some examples. Next
we consider Gaussian and erasure wireless networks where nodes are are permitted
only two possible operations – nodes can either decode what they receive (and then
re-encode and transmit the message) or simply forward it. We present a simple greedy
algorithm that returns the optimal scheme from the exponential-sized set of possible
schemes. This algorithm will go over each node atmost once to determine its operation
and hence is very efficient.

1 Introduction

In a wireline network having a single source and a single destination, we can think of in-
formation flow in the same terms as fluid flow and obtain a max-flow min-cut result to get
capacity. This treatment closely follows that of the Ford-Fulkerson [1] algorithm to give us a
neat capacity result. This has been well understood for many years. However, until recently,
similar min-cut capacity results were not known for any other class of network problems.
Before we describe the recent results obtained in network problems, let us understand the
general network problem. This can be stated in the context of a multi-terminal network [2]
as follows. We have a set of nodes and the “channel” between these is specified by a proba-
bility transition function which governs the relationship between the signals transmitted by
the nodes and how these are received by the other nodes. Every node can have messages
that it wants to send to every other node. Because of the generality of this model, it can be
tailored to describe many practical systems easily. For instance, several wireless as well as
wireline systems, (stationary) ad hoc and sensor networks, etc., can be modeled by choosing
a suitable probability transition function.

Not surprisingly, finding the capacity region in this general setting is extremely chal-
lenging. In [2] outer bounds on the capacity region can be found. These have the form of
“min-cut” upper bounds. Such an upper bound formalizes the intuitively satisfying notion
that the rate from node a to node b cannot exceed the rate that any cutset of edges from a to
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b can support. However, determining whether schemes of network operation that reach this
upper bound exist or not has proven to be very difficult. Even in simple relay networks, i.e.,
networks having one source node, one destination node and a single other node (called the
relay node), the answer to this question is not known in general [2]. Only in special cases of
the probability transition function (defined as “degraded” distributions) do we know schemes
that can reach the upper bounds and thus attain capacity.

In this context, the results in [3], [4] are remarkable. They say that, in a wireline network
setting, we can indeed achieve the min-cut upper bounds for a special case of a certain class
of problems called multicast problems. In this problem, we have one source node and several
sink nodes that want to receive the same message from the source. It turns out that using
network coding techniques we can achieve the min-cut capacity of the network. Further, [5]
put this problem in an algebraic framework and presented linear schemes that also achieved
this capacity. In addition, for some more general multicast problems capacity has been
shown to be achievable using linear network coding [5]. The work of [6, 7, 8] demonstrates
the strengths of this algebraic approach.

We motivate the work presented in this paper by first examining a feature of the recent
results in wireline networks and trying to determine if this feature is applicable in more
general networks, viz., that in all the capacity achieving schemes we have referred to above,
the min-cut upper bounds are reached through separate channel and network coding. This
means that there exists an optimal strategy in which each link in the wireline network can be
made error-free by means of channel coding and network coding can be employed separately
on top of this to determine which messages should be transmitted on which link. This is
quite unexpected and leads us to wonder if such a separation can be optimal in more general
network settings.

In the early sections of this paper, we will present simple wireless networks where this
principle of separation fails. Thus we will show that operating wireless networks in a multi-
hop manner, where each relay node decodes the message it receives is not necessarily the
right approach. We will suggest some schemes of operation that will outperform those that
require the ability of relay nodes to decode.

We will focus attention on two specific wireless network models. The important features
that characterize a wireless network are broadcast and interference. We will look at Gaussian
Wireless Networks and Erasure Wireless Networks. The former has Gaussian channels as
links and incorporates broadcast as well as interference. The second model has erasure
channels as links and incorporates broadcast, but not interference. For these models, we will
show that making links error-free can sometimes degrade the performance. In fact, asking
nodes to simply forward their data rather than decoding it is sometimes more advantageous.
This tells us that wireless networks need to be understood differently from wireline networks.
We will see some explanations as to why this is the case later in the paper.

In our study of wireless networks, we propose a scheme of network operation that permits
nodes only two operations. One is decoding to get the original data and then resending the
same message as the source. The other is forwarding the data as is received. Since each node
has two options, we have an exponential-sized set of possible operations. We will present
an algorithm that goes over each node at most once to find the optimal operation among
this set of restricted operations. This will be a greedy algorithm that avoids searching over
the exponential-sized set of possible operation allocations. We also present an algorithm
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that can approach the best rate arbitrarily closely in an iterative manner. This will be a
“decentralized” algorithm in the sense that each node needs only one bit of information from
the destination in every iteration and no knowledge of the rest of the network in order to
determine its own operation.

The organization of this paper is as follows. In Section 2 we present two wireless network
models. These will be the Gaussian and Erasure Wireless Networks. In Section 3 we show
that with these wireless models, making links or sub-networks error-free can be sub-optimal.
In Section 4 we will formally state the two operations that nodes will be permitted to perform.
With this setup, we will state our problem of allocating appropriate operations in Section
5. In Section 6 we will see how rates are calculated for all nodes in the network and how
asking certain nodes to decode and others to forward can affect the rate of the network.
In Section 7 we will state our algorithm to find the optimal policy. In Section 8 we will
prove optimality of the algorithm. We will see some examples in Section 9 that will show
that the gap between the “all nodes decode” strategy and our method can be significant. In
Section 10 we will discuss the decentralized algorithm. We present upperbounds on the rate
achievable by our scheme in Section 11. Conclusions and future work is presented in 12.

2 Two wireless network models

In this section we formalise two wireless network models. These are Gaussian Networks
and Erasure Networks. In both cases the network consists of a directed, acyclic graph
G = (V, E) where V is the set of vertices and E is the set of directed edges where each edge
is a communication channel. We will denote |V| = V and |E| = E. Also, we will have
V = {v1, · · · , vV } and E = {(vi, vj) : (vi, vj) is an edge}. We will assume, without loss of
generality, that s = v1 is the source node and d = vV is the destination. We will assume
that every edge is on some directed path from s to d. If we have edges other than these, we
remove them and what remains is our graph G. We will denote the message transmitted by
vertex vi by X(vi) and that received by node vj by Y (vj).

d

v4 v5

X5

s

v2 v3

Y2

Figure 1: Example of a network

Figure 1 represents a network with 6 vertices and 9 edges where v1 is the source s and
v6 is the destination d. X(v5) is the message transmitted by v5 and Y (v2) is that received
by v2.

1. Gaussian Wireless Networks In these networks, each edge (vi, vj) of the network
is a Gaussian channel. We will assume that nodes broadcast messages, i.e., a node
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transmits the same message on all outgoing edges. Assuming that Figure 1 represents
a Gaussian wireless network, X(v5) is the message transmitted on edges (v5, v3) and
(v5, v6). We will also assume interference, i.e., the received signal at node vi is the sum
of all the signals transmitted on edges coming in to it and additive white Gaussian
noise ni of variance σ2

i . Therefore, in general, we have

Y (vi) = ni +
∑

vj :(vj ,vi)∈E
X(vj).

All nis are assumed independent of each other as well as the messages. For Figure 1
this implies that Y (v2) = X(v1) + X(v4) + n2. We will assume that all transmitting
nodes have a power constraint of P .

2. Erasure Wireless Networks In these networks, each edge (vi, vj) of the network is a
binary erasure channel with erasure probability εi,j. In addition, we assume that nodes
(other than the source node) can transmit erasures and they are received as erasures
with probability 1. Denoting erasure by ∗, this assumption means that edges can also
take ∗ as input and this is always received as ∗. In short, the channel for edge (vi, vj)
(for vi 6= s) is modified as in Figure 2. We incorporate broadcast in the model, i.e.,
each transmitting node must send out the same signal on each outgoing edge. Now
assuming that Figure 1 represents a wireless erasure network, v5 transmits X(v5) on
edges (v5, v3) and (v5, 46).

However, we do not permit interference. This means that a node having several incom-
ing edges sees messages from each edge without their interfering with each other. In
general, if vi has γI(i) incoming edges, it will see γI(i) messages that do not interfere
with each other. 1

Finally, we mention that instead of the regular binary erasure channel, we can consider
a channel with any finite alphabet A as the input alphabet and get a more general
erasure wireless network model. Our results go through for this also, but for simplicity,
we restrict ourselves to binary inputs.

0 0
(1 − εi,j)

1 1

εi,j

εi,j

1
∗ ∗

(1 − εi,j)

Figure 2: Modified Erasure Channel

1There exist network models in the physical layer that incorporate interference, which, when abstracted
to an erasure network model act similarly to the interference-free model we have described here.
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In Figure 1, we see that Y (v2) consists of two received messages – the message coming
in on edge (v1, v2) (which is X(v1) with some bits erased) as well as the message coming
in on edge (v4, v2) (which is X(v4) with some bits erased).

For both networks, we will assume instantaneous transmission on all links.

3 Optimizing over sub-networks does not work

Theorem 1. For the wireless networks described in Section 2, making sub-networks error-
free can be suboptimal.

Proof. We give some examples to demonstrate this.

s

v3

v2

d

(a) Graph representation of a relay
network with two relay nodes.
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(b) Critical value for erasure
probability as a function of
the number of nodes in the re-
lay network.

Figure 3: Proof of Theorem 1

• Gaussian Relay Networks: Consider a Gaussian parallel relay network consisting
of two relay nodes and one source-destination pair. See Figure 3(a). The relay nodes
v2 and v3 are solely to aid communication from source to destination. We assume that
the noise power at each receiver is σ2 and the transmit power at each node is P . Let
ρ , P

σ2 be Signal to Noise Ratio (SNR).

One way to view the network is as a cascade of a broadcast channel (from s to {v2, v3})
and a multiple access channel (from {v2, v3}). This is equivalent to assuming that the
relays decode their messages correctly and code them again and transmit. If the relays
are receiving independent information at rates R1 and R2, we have R1+R2 ≤ log(1+ρ)
as the capacity region. These rate pairs (R1, R2) can be supported by the multiple
access channel and hence the maximum rate from s to d is no greater than log(1 + ρ).
If the relays are receiving exactly the same information from the source, the maximum
rate of this is log(1+ ρ). In this case, the multiple access channel is used for correlated
information and can support rates upto log(1 + 4ρ). In either case, asking the relay
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nodes to decode limits the rate from s to d to log(1 + ρ). (We note also that the
broadcast sub-network is the bottleneck in both cases.)

Now consider another strategy in which the relay nodes do not decode but only normal-
ize their received signal to meet the power constraint and transmit it to the destination.
In this case the received signal at the destination is

Y (v4) =

√

P

P + σ2
(2X(v1) + n2 + n3) + n4

where X(v1), Y (v4), n2, n3, n4 are, respectively, the transmitted signal from the source,
the received signal at the destination and the noises introduced at v2, v3 and d. Thus,
the signal received by d is a scaled version of X(v1) with additive Gaussian noise. The
maximum achievable rate, denoted by Rf , is

Rf = log

(

1 +
4P 2

P+σ2

σ2 + 2Pσ2

P+σ2

)

= log

(

1 +
4ρ2

3ρ + 1

)

.

where ρ is as before. Here, the subscript f stands for forwarding.

Comparing Rd and Rf , we can see ρ = 1 is a critical value in the following sense.
For ρ > 1, we have superior performance in the forwarding scheme and for ρ < 1 we
have better rate with relay nodes decoding and re-encoding. This implies that making
a sub-network error-free (in this case, the broadcast section, or the links (v1, v2) and
(v1, v3)) can sometimes be sub-optimal.

We note that decoding at one of the relay nodes and forwarding at the other is always
sub-optimal.

In general, if we have k(≥ 2) relay nodes in parallel rather than two, it can be easily
checked that

Rd = log(1 + ρ) and Rf = log

(

1 +
k2ρ2

(k + 1)ρ + 1

)

With this we get a critical value of ρ = 1
k2−k−1

below which decoding is better and
above which forwarding is better. Clearly, this goes to zero for large k. Therefore in
the limit of k → ∞ it is always favorable to forward.

It turns out that this fact is also true for Gaussian relay networks in the presence of
fading. The work of [9] shows that for fading Gaussian relay networks with n nodes,
the asymptotic capacity achievable with the relay nodes decoding (and re-encoding)
scales like O(log log n) whereas with the forward scheme it scales like O(log n).

• Erasure Relay Network: Consider, once again, the network of Figure 3(a), where,
now, each link represents an erasure channel with erasure probability εi,j = e. Since
we have broadcast, node s transmits the same messages to relay nodes v2 and v3. If
the relay nodes decode and re-encode, the rate is bounded by the sum-rate capacity of
the broadcast system, which gives

Rd = 1 − e.
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If the relay nodes simply forward what they receive, it is easy to see that the destination
sees an effective erasure probability of (1 − (1 − e)2). (We will spell out how to do
this calculation for a general network in Section 6.) Forwarding erasures is possible
since we are assuming the modified erasure channel of Figure 2. With this we have
Rf = 1− (1− (1− e)2)2. Comparing Rf and Rd, we can see that e = 3−

√
5

2
is a critical

value, above which decoding and re-encoding is better and below which forwarding is
better.

Thus we see that for this network also, making the broadcast sub-network error-free is
not always optimal.

In general, if we have k relay nodes in parallel rather than two, we have

Rd = 1 − e and Rf = 1 − (1 − (1 − e)2)k

and the critical value of e is as plotted in Figure 3(b). Below this, forwarding is better
and above this decoding is better. In the limit of large k, it is always better to forward.

From this we see that making links or sub-networks error-free does not ensure optimal
network operation. It can sometimes be provably sub-optimal.

In this proof a simple operation like forwarding the received data proved to be better
than decoding it. We understand this as follows. Because of the broadcast present in wireless
networks, the same data naturally gets passed on to the destination along many different
paths. Therefore some nodes receive better versions of the data on incoming links than other
nodes and are automatically in a better position to decode. Forcing all the nodes to decode
and be error-free only imposes additional bottle-necks on the rate. Therefore it is beneficial
to carefully check the quality of the effective signal that various nodes get to see and then
decide whether to ask them to decode or not.

4 A Possible Set of Network Operations

It follows from the previous discussions that to obtain the optimum rate over wireless net-
works, the nodes must perform operations other than just decoding. Determining what the
optimum operation at each node should be, especially for a general wireless network appears
to be a daunting task. 2 We shall therefore simplify the problem by allowing one of only two
operations at every node. One will be the decode and re-encode operation as before. The
other is the far simpler operation of forwarding the received data as is. The first operation,
viz., decode and re-encode is typically the only operation used in multi-hop networks and
many wireline networks. In effect, we are attempting to attain higher rates by introducing
the additional operation of forwarding.

We will assume that the network operates in blocks of length n. We assume that the
source s has a set of message indices

Ω = {1, 2, . . . , 2bnRc}

2We should remark that for the broadcast erasure networks studied here, provided information on the
location of erasures is available at the receiver, the optimum operation of the nodes and the optimum capacity
has been found in [10]. However, we shall not delve into this here.
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and an encoding function
f : Ω → X n

where X is R for the Gaussian wireless network and {0, 1} for the erasure wireless network.
To transmit message i ∈ Ω, the source transmits f(i). With this the source operates at rate
R. {f(1), f(2), . . . , f(2bnRc)} is the set of codewords or possible transmitted messages. This
set is called the codebook and is denoted by C. We assume that all nodes have the codebook.
For the Gaussian network we will assume that the codebook meets the power constraint, i.e.,
E‖f(i)‖2 ≤ P .

In this paper, we restrict the relay nodes to two operations. These have been introduced
in the examples of Section 3, viz., “forward” and “decode and re-encode”. We now state
them formally.

1. Decode and Re-encode: This operation implies that when node vi receives mes-
sage Y (vi) it performs ML decoding of Y (vi) to determine which message index was
transmitted by s. Since it has the codebook, it re-encodes the message using the same
codeword that the source s would have used and transmits the same codeword. In
short, it should act like a copy of the source.

However, for this to happen, we need that the decoding be error-free. This implies that
the rate R at which the source operates should be no greater that the maximum rate
at which node vi can decode. We will see the relevance of this constraint in Section 5.

2. Forward: We will describe this operation separately for the two network models. In
the Gaussian network, node vi receives message Y (vi) given by

Y (vi) = ni +
∑

vj :(vj ,vi)∈E
X(vj) (1)

“Forwarding” implies that the node normalizes this signal to meet the power constraint
and then transmits the message. Therefore it transmits X(vi) given by

X(vi) =

√

P

E‖Y (vi)‖2
Y (vi).

We will assume that E‖Y (vi)‖
2 is known to vi.

For the erasure network, nodes either decode without error and transmit the original
codeword or “forward” the received data. Consider node vi which sees data coming in
on several edges, in the form of n-length blocks of bits and erasures. For the b-th bit of
such a block, it either sees erasures on every edge (and sees an effective erasure) or gets
to see the bit on at least one incoming edge. (It cannot happen that the node sees 1 on
a particular edge and 0 on another edge for the b-th position. This is because of our
assumption that whenever an earlier node decodes it does so without error.) Therefore
in our interference free model, every relay node sees an effective erasure channel from
the source, i.e., it sees the codeword transmitted by the source with some bits erased.
“Forwarding” means broadcasting this sequence of bits and erasures.
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Note that the effective erasure probability seen by node vi is a function of the network
topology and parameters, εi,j. We will see in Section 6.3 how this effective erasure
probability can be calculated.

By restricting ourselves to only two operations, we have ensured that all nodes in the network
see a Gaussian channel (with some effective SNR) or erasure channel (with some effective
erasure probability) with respect to the transmitted codeword. Therefore, they can do ML
decoding or typical set decoding if R is no greater than the rate that they can support. We
will always ensure that R satisfies this constraint.

Having described the two operations permitted to the relay nodes in the two networks,
we are now ready to formally state the problem.

5 Problem Statement

Since we allow only two operations to nodes, viz., “decode and re-encode” and “forward”
and every relay node must perform one of these, it is enough to specify the set of relay nodes
that “decode and re-encode” in order to completely specify the working of the network. The
source and destination will always be excluded from this set.

If a set D ⊆ V − {s, d} is the set of nodes that “decode and re-encode”, we will call D a
policy for network operation.

Under policy D, each node of the network sees an effective (Gaussian or erasure) channel
from the source. Let the effective SNR that node vi sees under policy D be denoted by ρD(vi)
for Gaussian networks. For erasure networks we denote the effective erasure probability seen
by node vi under policy D by eD(vi). Therefore the rate that node vi can support under
policy D is log(1 + ρD(vi)) or (1 − eD(vi)) for Gaussian or erasure networks, respectively.
In general we will call this RD(vi). Nodes in D as well as the destination must be able to
perform error-free decoding. This means that the rate at which the source transmits must
be no greater than the rates at which these nodes can decode. This tells us that under policy
D, the rate R at which we can operate the network is constrained by

R ≤ min
vi∈D∪{d}

RD(vi). (2)

We denote this minimum by RD.

RD = min
vi∈D∪{d}

RD(vi). (3)

Intuitively, asking some nodes to decode means that there are more copies of the source in
the network and hence the rate which the destination can support increases. On the other
hand, asking a node to decode introduces a constraint on the rate R. This is the tradeoff for
any policy D. For instance, in Figure 1 consider nodes v2 and v4. If v4 forwards, node v2 sees
an effective erasure probability of ε4,2ε1,2 + ε1,4ε1,2(1 − ε4,2). (We will see how this has been
calculated in Section 6.3.) On the other hand, if v4 decodes, node v2 is at an advantage since
it sees a lower effective erasure probability, viz., ε1,2ε4,2. However, asking v4 to decode puts
a constraint on the rate as seen by (2) since the rate that v4 can support is only (1 − ε1,4).
This constraint is RD ≤ 1 − ε1,4.
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Our problem is to find the policy that gives the best rate, i.e., to find D such that RD is
maximised, viz.,

max
D

min
vi∈D{d}

RD(vi).

First we need to address the question of finding RD(vi), i.e., of finding the rate at node
vi under policy D. Recall that X(vi) and Y (vi) are the transmitted and received messages
at node vi. If we are using policy D, we will denote these by XD(vi) and YD(vi). We may
drop the subscript D if it is clear which policy we are referring to. Note that for the source,
the transmitted message is X(v1) irrespective of the policy.

6 Determining the rate at a node – RD(vi)

In this section we describe a method to find the rate at an arbitrary node vi when the set
of decoding nodes is given by D. Therefore, we need to find the effective SNR or erasure
probability of the received signal YD(vi). In order to do that, we need the concept of a partial
ordering on the nodes.

6.1 Partial Ordering of nodes

Consider two distinct nodes vi and vj of the network. Exactly one of the following three will
occur:

1. There is a directed path from vi to vj. In this case we will say that vi < vj.

2. There is a directed path from vj to vi. In this case we will say that vj < vi.

3. There is no directed path from vi to vj or from vj to vi. In this case we will say that
vj and vi are incomparable.

Note that since we assume acyclic networks, we cannot have directed paths both from vi to
vj and from vj to vi. Thus we have a partial ordering for nodes in the network. For example,
in Figure 1, we have v4 < v3 but v2 and v5 are incomparable. Note that the partial ordering
gives us a (non-unique) sequence of nodes starting with s such that for every vi, all the nodes
vj that satisfy vj < vi are before it in the sequence [11]. Call such a sequence S. A possible
sequence S for Figure 1 is s, v4, v2, v5, v3, d.

Next we address the issue of determining the rate under a particular policy. We discuss
this separately for Gaussian wireless networks and Erasure wireless networks.

6.2 Finding the rate in Gaussian Wireless Networks

Recall that YD(vj) is the received signal at vj under policy D. Once we know YD(vj) we can
determine the signal power and the noise power in it. Denote these by PD(vj) and ND(vj)
respectively. Consider node vj. If it is decoding, XD(vj) = X(v1). If it is forwarding,

XD(vj) =

√

P

E‖YD(vj)‖2
YD(vj) =

√

P

PD(vj) + ND(vj)
YD(vj).
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For the Gaussian wireless networks, we now outline a method for finding the rate for
all the nodes by proceeding in the order given by S. Without loss of generality, assume
that the nodes are already numbered according to a partial ordering. Therefore S = (v1 =
s, v2, . . . , vV = d). Then for v2, we only have an edge coming in from s and hence

YD(v2) = X(v1) + n2.

Let our induction hypothesis be that we know YD(vj) for j = 1, . . . , i − 1. For YD(vi) we
now have

YD(vi) = ni +
∑

vj :(vj ,vi)∈E
XD(vj) (4)

= ni +
∑

vj :(vj ,vi)∈E ,vj∈D∪{s}
X(v1) +

∑

vj :(vj ,vi)∈E ,vj /∈D∪{s}
XD(vj)

= ni +
∑

vj :(vj ,vi)∈E ,vj∈D∪{s}
X(v1) +

∑

vj :(vj ,vi)∈E ,vj /∈D∪{s}

√

P

PD(vj) + ND(vj)
YD(vj).

By our hypothesis, we know all the YD(vj) that occur in the last summation, Substituting
for these, we get YD(vi). Careful observation indicates that this will be a linear combination
of X(v1) and the noise terms n2, . . . , ni.

In general, if this linear combination is given by

Y (vi) = aDX(v1) +

i
∑

j=2

aD,j(vi)nj,

we have PD(vi) = a2
DP and ND(vi) =

∑i
j=2 a2

D,j(vi)σ
2
j . Once these are known, the SNR is

simply ρD(vi) = PD(vi)
ND(vi)

and the rate can be calculated as RD(vi) = log(1 + ρD(vi)).

6.3 Finding rate in Erasure Wireless Networks

We first put this problem in a graph theoretic setting. We are given a directed, acyclic graph
where certain nodes act as sources. For us, the set D ∪ {s} is the set of source nodes. All
the edges of the graph have certain probabilities of failing, i.e., of being absent. With this
setup, for every node v in the network (excluding s, but including those in D) we need to
find the probability that there exists at least one directed path from some source node to
this node. This is the Network Reliability problem in one of its most general formulations
[12, 13]. This is a well studied problem and is known to be #P -hard [13]. Although no
polynomial time algorithms to solve the problem are known, efficient algorithms for special
graphs are known. An overview of the network reliability problem can be found in [14]. In
the rest of this section we propose two straightforward methods to compute the probabilities
of connectivity that we are interested in. We will also mention some techniques that can
reduce the computation involved in these methods.

Assume we have a policy D. Consider a node vi of the network. To find RD(vi) we need
to find eD(vi). A bit is erased at node vi if it is erased on all incoming links. With each
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edge (vi, vj) in the graph, associate a channel random variable z(i, j). This takes the value 0
when a bit is erased and the value 1 when a bit is not erased. Thus, it is a Bernoulli random
variable with probability (1 − εi,j).

Consider all the directed paths from s to vi. Let there be ki paths. Denote the paths
by B1, . . . , Bki

. Let path Bj consist of lj edges. We specify path Bj by writing in order the
edges it traverses, i.e., with the sequence ((vj1 , vj2), (vj2, vj3), . . . , (vjlj

, vjlj+1
)). We know that

s = vj1 and vi = vjlj+1
. Consider the set of vertices excluding vi that are on path vj, i.e.,

{vji
: i = 1, . . . , lj}. Some nodes in this set may belong to D, i.e., they are decoding nodes.

In this case we know that they transmit the original codeword exactly. Let t be the largest
index in this set such that vjt

decodes. Therefore, vi will not receive bit b along path Bj only
if an erasure occurs on an edge that comes after vjt

in the path. We associate with path Bj

the product of the random variables that affect this, viz.,

Zj = z(jt, jt+1) · z(jt+1, jt+2) · · · · · z(jlj , jlj+1).

This product is zero if one of the z random variables takes value zero, which, in turn, means
that an erasure occurred on that edge.

Now, vi sees an erasure only when none of the paths from s to itself manage to transmit
the bit to it. Therefore, vi sees an erasure when Zj = 0 for all the paths Bj, j = 1, . . . , ki.
Therefore we have

RD(vi) = 1 − eD(vi)

= 1 − P (

ki
⋂

j=1

(Zj = 0))

= P (

ki
⋃

j=1

(Zj 6= 0))

One way to evaluate this is by checking all possible combinations of values that the
z variables can take and finding the total probability of those combinations that satisfy
∪ki

j=1(Zj 6= 0). This procedure has complexity O(2E). One observation that can make this
procedure more efficient is the following – if we know that setting a certain subset of the z
variables to 1 is enough to make the event

⋃ki

j=1(Zj 6= 0) happen, then for every superset
of this subset, setting all the z variables in that superset to 1 is also enough to make the
event

⋃ki

j=1(Zj 6= 0) happen. With this, we may have to check out fewer than the 2E possible
combinations of values for the z variables and reduce the complexity.

Another way to evaluate this is by using the Inclusion Exclusion Principle [11]. This
gives us

P (

ki
⋃

j=1

Zj 6= 0) =

ki
∑

r=1

∑

1≤j1<···<jr≤ki

(−1)r+1P (Zj1 6= 0, . . . , Zjr
6= 0)

Since we have ki paths, the above expression has 2ki − 1 terms. A general term of the form
P (Zj1 6= 0, . . . , Zjr

6= 0) can be evaluated by first listing all the z variables that occur in at
least one of the r terms. Say these are z(i1, j1), · · · , z(iq, jq). Now P (Zj1 6= 0, . . . , Zjr

6= 0)
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is given by the product (1− εi1,j1)× · · ·× (1− εiq ,jq
). This procedure has complexity O(E2k)

where k is the maxi ki. In this procedure, the complexity of listing all the variables in a
certain set of r terms can be reduced by storing the lists that one makes for sets of (r − 1)
terms and simply adding on the z terms from the r-th term to the appropriate list.

7 Algorithm to find Optimum Policy

In general, since we have V −2 relay nodes and each node has two options, viz., “forwarding”
and “decoding and re-encoding”, we have 2V −2 policies. To find the optimum policy we can
analyze the rate for each of these policies and determine the one that gives us the best rate.
This strategy of exhaustive search requires us to analyse 2V −2 policies.

Here, we propose a greedy algorithm that finds the optimum policy D which maximises
the rate. This algorithm require us to analyze at most V − 2 policies. In the next section
we will give a proof of correctness for this algorithm.

1. Set D = ∅.

2. Compute RD(vi) for all vi ∈ V. (Use techniques of Section 6.)
Find RD = minvi∈D∪{d} RD(vi).

3. Find M = {vi|vi /∈ {s, d} ∪ D, RD ≤ RD(vi)}.

4. If M = ∅, terminate. D is the optimal strategy.

5. If M 6= ∅, find the largest D′ ⊆ M such that ∀v ∈ D′, RD(v) = maxvi∈M RD(vi).
Let D = D ∪ D′.
Return to 2.

At each stage of the algorithm, we look for nodes that are seeing a rate as good as or
better than the current rate of network operation. If there are no such nodes, the algorithm
terminates. If there are such nodes, we choose the best from among them. Thus, in every
iteration, the nodes we add are such that they do not put additional constraints on the rate
of the network. Therefore, the rate of the network can only increase in successive iterations.

Note that since we assume a finite network, this algorithm is certain to terminate. Also,
since D cannot have more than (V − 2) nodes, the algorithm cycles between steps 2 to 5 at
most (V − 2) times. This is significantly faster than the strategy of exhaustive search that
requires us to analyze 2V −2 policies.

The complexity of the algorithm depends on how fast the computation of RD(vi) can be
done. We have seen techniques for this computation in Section 6.

8 Analysis of the Algorithm

We first prove a Lemma regarding the effect of decoding at a particular node on the rates
supportable at other nodes.
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Lemma 1. When node v is added to the decoding set D, the only nodes vi that may see a
change in rate are vi > v. This change can only be an increase in rate, i.e., ∀vi such that
vi > v we have, RD(vi) ≤ RD∪{v}(vi). Every other node vj is unaffected, i.e., RD(vj) =
RD∪{v}(vj).

Proof. We give separate proofs for the Gaussian Network and the Erasure Network.
Gaussian Network : Recall the computation of ρD(vi) described in Section 6.2. The
computation for YD(vi) depends only on (some of) the YD(vj) where (Vj, vi) is an edge.
Therefore, inductively, it is clear that YD(vi) (and hence ρD(vi)) depends only on the nodes
v where v < vi. Therefore, the only nodes that are affected when v changes its operation
(from “forwarding” to “decoding and re-encoding”) are vi > v. The rest are unaffected.

Consider one of the XD(vj) terms in (4). Note that each of these are of power P of which
some power is the signal power and the rest is the noise power. If vj changes its operation
from forwarding to decoding, XD(vj) = X(v1), i.e., the signal power increases to P and
the noise power goes to 0. If vj is forwarding, XD(vj) is only a scaled version of YD(vj).
Since it is always of power P , if the SNR at node vj increases, the signal power in XD(vj)
increases while the noise power decreases. From (4) we see that in both these cases, there is
an increase in the signal power of YD(vi) and a decrease in the noise power. This implies an
increase in the SNR.

Therefore, when v is added to D, by induction, for all nodes vi > v, the SNR, if affected,
can only undergo an increase. Naturally, we have the same conclusion for the rate.
Erasure Network : Recall the computation of eD(vi) described in Section 6.3. Consider
the product Zj corresponding to path Rj. Adding v to D will not affect Zj in any way if v
does not occur on Rj. Therefore the only nodes that may be affected are vi such that v is
on some path from s to vi, i.e., v < vi. For these nodes, consider the product Zj in the two
cases when the policy is D and when the policy is D∪{v}. The only way Zj may be affected
is if v occurs on the path Rj after vjt

(where vjt
is as defined in Section 6.3. In this case, Zj

for policy D ∪ {v} will have fewer terms than Zj for policy D. This will happen for every
path on which v occurs. Since eD(vi) = P (∩j(Zj = 0)), we have that eD∪{v}(vi) ≤ eD(vi).
This means that RD(vi) ≤ RD∪{v}(vi) for all vi > v and RD(vj) = RD∪{v}(vj) for all other
nodes.

This Lemma tells us that adding nodes to the set of decoding nodes can only increase
the rate to other nodes. While this sounds like a good thing, it also puts a constraint on the
rate as indicated by (2). It is this tradeoff that our algorithm seeks to resolve by finding the
optimal set of decoding nodes.

8.1 Proof of Optimality

Theorem 2. The algorithm of Section 7 gives us an optimal set of decoding nodes.

Proof. Let S be an optimal set of decoding nodes. Let D be the set returned by the algorithm.
We will prove that RD ≥ RS. Then, since S is optimal, we will have RD = RS.
We prove RD ≥ RS in two steps. First we show that RS∪D ≥ RS. Then we show that
S ∪ D − D = ∅, i.e., S ∪ D = D. This will complete the proof.
Step 1: In every iteration, the algorithm finds subsets D′ and adds them to D. Denote by
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Di the subset that is added to D in the i-th iteration. Assuming the algorithm goes through
m iterations, we have D = D1 ∪ · · · ∪ Dm where the union is over disjoint sets. In the
algorithm, when Di is added to D, all the nodes in it are decoding at the same rate which
is RD1∪···∪Di−1

(v) for v ∈ Di. We will call this rate Ralgo,i. Consider the smallest i such that
Di * S, i.e., Di is not already entirely in S.
Claim: Adding Di to S does not decrease the rate, i.e., RS∪Di

≥ RS.

Proof. Because of the acyclic assumption on the graph, we will have some nodes v ∈ S such
that ∀u(6= v) ∈ S we either have v < u or v and u are incomparable. Let L be the set of
all such nodes v. Note that by Lemma 1 node v supports a rate RS(v) = R∅(v). By 3, for
every v ∈ L we have the necessary condition

RS ≤ RS(v) = R∅(v). (5)

Also note that D1, . . . , Di−1 are all in S and by the definition of L and Lemma 1 we have

R∅(v) = RD1∪···∪Di−1
(v). (6)

We now consider two cases.

• If for some w ∈ L, we also have w ∈ Di, then from (5) and (6) we have RS ≤ RS(w) =
R∅(w) = RD1∪···∪Di−1

(w) = Ralgo,i.

• On the other hand, if none of the nodes in L are in Di, pick any node v ∈ L. We have
v /∈ Di. We now consider two subcases.

– Let v /∈ D1, . . . , Di−1. We note from Steps 3 and 5 of the algorithm that it picks
out from the set of nodes not in D, all nodes with the best rate. Since v does not
get picked, we have Ralgo,i > RD1∪···∪Di−1

(v). This alongwith (5) and (6) gives us
RS ≤ RD1∪···∪Di−1

(v) < Ralgo,i.

– The other possibility is that v ∈ D1∪. . .∪Di−1. Since the Dis are disjoint, there is
a unique j such that v ∈ Dj. Since v ∈ L, by Lemma 1, Ralgo,j = RD1∪···∪Dj−1

(v).
With the same argument as that for (6), we have R∅(v) = RD1∪···∪Dj−1

(v). But
since the algorithm never decreases rate from one iteration to the next, we have
Ralgo,i ≥ Ralgo,j. Putting these together we get Ralgo,i ≥ Ralgo,j = RD1∪···∪Dj−1

(v) =
R∅(v). With (5) this gives us RS ≤ RS(v) = R∅(v) ≤ Ralgo,i.

Therefore, in every case, we have shown that RS ≤ Ralgo,i. This implies that adding the
rest of the nodes from Di to S will not put additional constraints on RS and hence cannot
decrease the rate. Therefore we have RS∪Di

≥ RS.

Since S is optimal, this proves that S ∪ Di also achieves optimal rate. We can now call
this set S and for the next value of i such that Di * S, we can prove that S∪Di has optimal
rate. Continuing like this we have that S ∪ D is optimal, or, in other words, RS∪D ≥ RS.
Step 2: Next we wish to show that S ⊆ D, i.e., S ∪D−D = ∅. Let us assume the contrary.
Let T = S ∪ D − D. Therefore, T ∩ D = ∅ but T ⊆ S. Thus, D ∪ S = D ∪ T where D
and T are disjoint. Consider v ∈ T such that ∀u(6= v) ∈ T we either have v < u or v and
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u are incomparable. We have RD∪T (v) = RD∪S(v). By Lemma 1, RD∪T (v) = RD(v). Also,
the constraint of (2) tells us that RD∪S ≤ RD∪S(v). Finally, note that since the algorithm
terminates without adding v to D, we have RD > RD(v). Putting these inequalities together
we have RD > RD(v) = RD∪S(v) ≥ RD∪S. But this contradicts the fact that S ∪ D is
optimal. Thus we have S ⊆ D, i.e., S ∪ D = D.
From Steps 1 and 2 we have RD ≥ RS. But since S was an optimal policy, D is also an
optimal policy. This proves that the algorithm does indeed return an optimal set of decoding
nodes.
The only case in which this proof does not go through is when the algorithm returns D = ∅
and S 6= ∅. In this case, consider node v ∈ L ⊆ S, where L is as defined earlier. Since
the algorithm does not pick up v, we have R∅ > R∅(v). But RS ≤ RS(v) = R∅(v) from
(5). Thus, RS < R∅. But this contradicts the optimality of S. Therefore, if there exists an
optimal, non-empty S, the algorithm cannot return an empty D.

Corollary 1. The algorithm of Section 7 returns the largest optimal policy D.

Proof. In the proof above, we have shown that for any optimal policy S, we have S ⊆ D.
This implies that D is the largest optimal policy.

9 Examples

In this section we present some examples of networks and show how the algorithm runs on
them.

9.1 Multistage relay networks

In Figure 4(a) we have depicted a multistage relay network. In this we have a single source
and destination and k layers of relay nodes. The i-th layer consists of li nodes. Between
the i-th and the (i + 1)-th layer we have a complete bipartite graph where all the edges
are directed from the i-th layer to the (i + 1)-th. We assume that each of these edges has
erasure probability εi. The source is connected to all the nodes in the first layer by erasure
channels with erasure probability ε0 and all the nodes in the k-th layer are connected to the
destination by erasure channels with erasure probability εk. We will also call d the (k+1)-th
layer and lk+1 = 1.

Because of the structure of this network, finding the rate under a particular policy is
easier than indicated in Section 6.3. Denote by Qi,j the probability that in layer i there are j
nodes that do not see an erasure. This defines Qi,j for i = 1, 2, . . . , (k+1) and j = 0, 1, . . . , li.
With this, for i = 1 we obtain,

Q1,k =

(

l1
k

)

εl1−k
0 (1 − ε0)

k. (7)

For i > 1, we can show the recursion below.

Qi,k =

(

li
k

) li−1
∑

t=0

ε
t(li−k)
i−1 (1 − εt

i−1)
kQi−1,t. (8)
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Denote by ei the probability that the at least one node in the i-th layer does not see an
erasure. We can show that

ei =

li
∑

k=0

Qi,k

(

1 −
k

li

)

Note that, by symmetry, whenever a node decides to decode, all the nodes in that layer
decode. When layer i decides to decode, we set Qi,li = 1 and Qi,j = 0 for j 6= li and continue
with the recursion of (8) for the other layers. This also extends to the case when more than
one layer decodes.

Now, our algorithm proceeds as before, but operates on layers rather than nodes and the
effective erasure probability at layer i is ei.

s

1 2 k

d

(a) Model of a multistage relay network
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Figure 4: Multistage relay network

As an explicit example, consider a multistage relay network with four layers between the
source and destination. Let l1 = 3, l2 = 6, l3 = 4, l4 = 5 and ε0 = p, ε1 = p2, ε2 = p, ε3 =
p3, ε4 = p where p is any number in the interval [0, 1]. For a fixed value of p, we can find the
optimum policy for the network and this will give us the optimal rate. Figure 4(b) shows this
optimal rate for the parameter p going from 0 to 1. This is not a smooth curve. The point
where the right and left derivatives do not match is where either the optimum policy or the
rate-determining layer changes. The rate with all nodes decoding has also been plotted. It
is 1 − p and we see that the algorithm gives us dramatically higher rates.

9.2 Erasure network with four relay nodes

Consider the relay network of Figure 5(a). All the links have the same erasure probability
p, where p is any number between 0 and 1. For this range of p, the algorithm has been used
to find the optimum rates and policies. The rate is plotted in Figure 5(b). Throughout,
the optimal policy is D = {v2, v3, v5}. The rate with all nodes decoding is 1 − p and is also
plotted. As expected, the algorithm outperforms the all-decoding scheme.

17



d

v4 v5

s

v2 v3

(a) Erasure network with four relay
nodes.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

e

R
at

e

Rate with algorithm
Rate with all nodes decoding

(b) Maximum rate as given by
the algorithm

Figure 5: Erasure network with four relay nodes

9.3 Gaussian network with three relay nodes

In Figure 6(a) we see a Gaussian network with three relay nodes. We assume that each node
is restricted to use power P = 1. Let the additive noise variances be σ2

2 = m, σ2
3 = m3, σ2

4 =
m2, σ2

5 = m1 where m can be an arbitrarily chosen real number. In Figure 6(b) we see the
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(a) Gaussian network with three relay
nodes.
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Figure 6: Gaussian network with three relay nodes

rate returned by the algorithm for the optimal policy for m ∈ [0.5, 1.5]. The rate with all
nodes decoding is also plotted. In the region m ∈ [0.5, 0.58] we see that the optimal policy
is infact that of decoding at all nodes and the two curves match. After that, the optimal
policy changes and hence we see that the optimal rate curve is not smooth.

10 A Distributed Algorithm for the Optimal Policy

The algorithm as proposed in Section 7 requires that the network parameters (viz., noise
variances or erasure probabilities) be known before the network operation begins so that
the optimum policy is known beforehand. With the algorithm in its current form the nodes
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cannot determine for themselves if they should decode or forward. In this section we propose
a scheme that can permit nodes to determine their own operation.

The algorithm works iteratively to converge to a rate. In each iteration, the rate of
operation of the network is incremented or decremented depending on whether the previous
transmission was successful or not. In every iteration, all the nodes get to decide their
operation for themselves.

Let R∗ be the maximum rate of the network. This is not known beforehand. We assume
that parameters R, δ and N are known to all the nodes beforehand. The blocklength n
is also predetermined and known to all the nodes. In addition, we require that the nodes
have a common source of randomness so that they can generate the same random codebook
individually. With this, consider the following algorithm.

1. All nodes generate the (same) codebook for rate R. They all set k = 0.

2. s transmits a randomly chosen codeword X(v1).

3. Every relay node vi attempts to decode the received message Y (vi).
If it can decode to a unique codeword, it transmits that codeword.
Else, it forwards the received message (with appropriate scaling, for the Gaussian
network).

4. The destination attempts to decode the received message.
If it decodes to a unique codeword, it sends back bit 1 to all the other nodes to indicate
this.
Else, it sends back bit 0 to all other nodes.

5. All nodes increment k. k = k + 1.
If transmitted bit was zero, all nodes set R = R − δ/2k.
If transmitted bit was one, all nodes set R = R + δ/2k.

6. While k ≤ N , go to Step 1.

Theorem 3. If the maximum rate of the network, viz. R∗ is in the range [R− δ, R + δ], the
algorithm above converges to it with an accuracy of 1

2N .

Proof. The source starts by transmitting at rate R. Each relay node receives messages on
all incoming links and decodes the message if it can. If it cannot, it simply forwards what it
has received. With this procedure, nodes decide their own operation. (The order in which
they decide this is a partial order in the sense defined in Section 6.1.) After the destination
receives all its incoming messages, it tries to decode. If R > R∗, the destination will definitely
not be able to decode. If R ≤ R∗, we claim that the destination will be able to decode. This
is because when a node decodes, it only improves the rates for other nodes. Also, note that
an arbitrary node v decides whether to decode or not only after all the nodes before it in
the partial order have already determined if the rate they can support is greater or smaller
than R. Since, by Lemma 1, these are the only nodes that affect the rate for v and they
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decode whenever they can, node v always gets to see the best situation it can as far as rate
R is concerned. This is true for the destination also.

Therefore, depending on whether the destination can decode or not, we can say if R∗ is
greater or smaller than R. If this bit of information is transmitted back to the source and
other nodes, they can accordingly decide whether to increase or decrease the rate for the
next transmission. Thus we have a decision tree of rates such that the ability or inability
of the decoder tells us which path to traverse in that tree we can finally converge on a rate
sufficiently close to the actual rate R.

This algorithm provides a very natural mode of network operation that obviates the need
for a central agent to know the entire network and decide the optimum policy. Although
some communication from the destination to the source and other nodes is required, this is
minimal and should be easily possible in a practical network setting.

We mention that a sightly more sophisticated algorithm than the above can be devised
that works for all values of R∗, rather than those in the interval [R − δ, R + δ]. We omit it
in the interests of brevity.

11 Upperbounds on the maximum rate

The algorithms of Section 7 as well as Section 10 converge to the maximum rate possible
with the decode/forward scheme, but we have no way of simply looking at the network and
saying what this maximum rate will be. In this section, we present upperbounds on the rate
achievable with the limited operations that we use in this paper.

11.0.1 Definitions

An s−d cut is defined as a partition of the vertex set V into two subsets Vs and Vd = V −Vs

such that s ∈ Vs and d ∈ Vd. Clearly, an s− d cut is determined simply by Vs. For the s− d
cut given by Vs, let the cutset E(Vs) be the set of edges defined below

E(Vs) = {(vi, vj)|(vi, vj) ∈ E , vi ∈ Vs, vj ∈ Vd}

Finally, we define X(Vs) and Y (Vs) as below.

X(Vs) = {vi|(vi, vj) ∈ E(Vs)}

Y (Vs) = {vj|(vi, vj) ∈ E(Vs)}

Thus X(Vs) and Y (Vs) denote the nodes transmitting and receiving messages across the cut
respectively.

11.0.2 Upperbound for Gaussian networks

For Gaussian networks, it is evident that making the additive noise zero at certain nodes
can only increase the maximum rate available at d. In particular let us make the additive
noise zero at all nodes except Y (Vs). Therefore, the received messages (and the transmitted
messages) at all nodes in Vs are exactly the same as that transmitted by the source. Now,
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if we permit the nodes in Y (Vs) to decode co-operatively, we will get an upperbound on the
rate that the destination can get.

Note that the SNR at node vj ∈ Y (Vs) is γ2
I (j)P/σ2

j where γI(i) is the number of edges
coming in to node vi. Since our codebook and noise are Gaussian distributed, the optimum
scheme for decoding co-operatively is taking a suitable linear combination of received mes-
sages and then decoding that. For optimal decoding, we find the linear combination that
gives us the best SNR. It is easy to show that the best SNR possible is the sum of the SNRs
seen by each node in Y (Vs).

Therefore an upperbound on the rate is

R ≤ log



1 + P
∑

vj∈Y (Vs)

γ2
I (j)

σ2
j





for every cut Vs.

11.0.3 Upperbound for Erasure networks

For erasure networks, it is evident that making certain links perfect, i.e., with zero erasure
probability, can only improve the performance. Therefore we can obtain an upperbound on
the rate by making all edges other than those in E(Vs) perfect. With this all the received
(and transmitted) messages in Vs are exactly the same as the codeword transmitted by the
source. Now, it is clear that the rate at which the nodes in Y (Vs) can decode co-operatively
is an upperbound on the rate available at the destination.

Clearly, the effective erasure probability seen by the set of nodes Y (Vs) is
∏

(vi,vj)∈E(Vs) εi,j

This gives us an upperbound on the rate. We have

R ≤ 1 −
∏

(vi,vj)∈E(Vs)

εi,j

for every cut Vs.
Note that in [10], a different min-cut upperbound is proposed and is shown to be achiev-

able. This gives the capacity of the network under the assumption that the destination has
perfect side-information regarding erasure locations from across the network. This is very
different from the setup of this paper.

12 Conclusions and Further Questions

To summarize, we have shown that making each link error-free in a wireless network is sub-
optimal. Thus a multi-hop approach, in which every relay node decodes the received message,
is not necessarily the correct approach for wireless networks. We have proposed a scheme
for network operation that is of use in practical networks and in which operations performed
by a node are restricted to decoding and forwarding – both of which are common operations
performed in a network setting. We have suggested an algorithm that finds the optimum
policy without exhaustive search over an exponential number of policies and also proposed
a method to converge to the correct policy without having a central decision-making agent.
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The algorithm of Section 7 can find the maximum rate and optimum policy for any
Gaussian or erasure wireless network. In addition, the bounds presented in Section 11 give
us some idea of what sort of optimal rates to expect. However, we still do not know what
sort of policies are optimal in what ranges of erasure probabilities or SNR. The examples
of Section 3 suggest that when the links are poor (high erasure probabilites low SNR) it is
better to decode. It would be interesting to know if this is true for general networks and
what thresholds exist below which a certain operation is always preferred.

Also, Corollary 1 tells us that the algorithm returns the largest decoding set. Since
decoding is the more costly of the two operations considered here, an algorithm that finds
the smallest decoding set such that the maximum rate is obtained is of interest.

Finally, we note that the capacity of the erasure wireless networks with side-information
was recently found [10] to be given by a min-cut expression. Comparing this capacity with
the upperbounds we have presented, it is clear that our scheme does not reach those bounds.
Of course, our schemes also do not assume the side-information regquired in [10]. Finding
practical schemes that reach this capacity is an interesting avenue for future work.
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