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Abstract

We examine two special cases of the problem of optimal Linear Quadratic Gaussian
control of a system whose state is being measured by sensors that communicate with
the controller over packet-dropping links. We pose the problem as an information
transmission problem. Using a separation principle, we decompose the problem into
a standard LQR state-feedback controller design, along with an optimal encoder-
decoder design for propagating and using the information across the unreliable link.
Our design is optimal among all causal algorithms for any arbitrary packet drop
pattern. Further, the solution is appealing from a practical point of view because it
can be implemented as a small modification of an existing LQG control design.

Key words: LQG control, Networked control systems, Packet-dropping links,
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1 Introduction

Recently, much attention has been directed toward systems which are con-
trolled over a communication link (see, e.g., [1,2] and the references therein).
In such systems, the control performance can be severely affected by the prop-
erties of the communication channel. Communication links introduce many
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Fig. 1. The architecture of a packet-based control loop. The channels are unreliable
and unpredictably drop packets.

potentially detrimental phenomena, such as quantization error, random de-
lays and packet drops to name a few. In extreme cases, poor network per-
formance can even destabilize a nominally stable control loop. Understanding
and counteracting these effects will become increasingly important as emerg-
ing applications of decentralized control mature.

The above issues have motivated much of the study of networked systems. Be-
ginning with the seminal paper of Delchamps [22], quantization effects have
been studied by Tatikonda [23], Elia and Mitter [24], Brockett and Liber-
zon [26], Hespanha et al. [27], Nair and Evans [25], and many others. The
effects of delayed packet delivery have also been considered in many works
using various models for the network delay, some representative examples be-
ing the works of Nilsson [16], Blair and Sworder [28], Luck and Ray [29] and
Zhang et al. [30].

In this note, we are specifically interested in systems communicating over links
that randomly drop packets. The nominal system is shown in Figure 1, where
the n channels represent communication links or networks that randomly erase
packets being communicated from the sensors to the controller. In particular,
we discuss two special cases of the problem.

(1) Case C1: There is only one sensor (and one channel) present.
(2) Case C2: There are 2 sensors present. However, while channel 1 drops

packets randomly, channel 2 transmits all packets.

While the case C1 is important in its own right, it is also the basic system
we need to understand for more general systems with multiple plants, sensors
and controllers. Preliminary work in this area studied stability of systems
utilizing lossy packet-based communication, as in [31,18,30]. Performance of
such systems was analyzed by Seiler in [18] and by Ling and Lemmon in [32]
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Fig. 2. The usual architecture for compensation for packet drops by the link.

assuming certain statistical dropout models. Approaches to compensate for the
data loss have also been proposed. Nilsson [16] proposed two approaches for
compensation for data loss in the link by the controller, namely keeping the old
control or generating a new control by estimating the lost data, and presented
an analysis of the stability and performance of these approaches. Hadjicostis
and Touri [20] analyzed the performance when lost data is replaced by zeros.
Ling and Lemmon [14,32] posed the problem of optimal compensator design
for the case when data loss is independent and identically distributed (i.i.d.)
as a nonlinear optimization. Azimi-Sadjadi [3] took an alternative approach
and proposed a sub-optimal estimator and regulator to minimize a quadratic
cost. Schenato et al. [8] and Imer et al. [13] extended this approach further
to obtain optimal controllers when the packet drops were i.i.d. The related
problem of optimal estimation across a packet-dropping link was considered
by Sinopoli et al in [19] and extended by Gupta et al in [15].

However, most of the designs proposed in these references aim at designing
a packet-loss compensator as shown in Figure 2. Most works assume a com-
munication link to be present only between the controller and the actuator.
The compensator accepts those packets that the link successfully transmits
and comes up with an estimate for the time steps when data is lost. This esti-
mate is then used by the controller. Our work takes a more general approach
by seeking the LQG optimal control for this packet-based problem. In partic-
ular, for the case C1, our architecture is as shown in Figure 3. Recognizing
that the problem is of making sure that the controller has access to the max-
imal possible information set (hence an information transmission problem),
we introduce an encoder at the sensor end. The compensator then effectively
becomes a decoder for the information being transmitted over the link. We
jointly design the controller, the encoder and the decoder to solve the optimal
LQG problem. Even though sensors equipped with wireless or network com-
munication capabilities will likely have some computational power available,
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Fig. 3. The structure of our optimal LQG control solution (Case C1).

we still look for encoding and decoding algorithms that are recursive in struc-
ture. Recursive algorithms require a constant amount of memory, processing
and transmission and hence will not overwhelm the resources available at the
device level.

There does not appear to be existing work dealing with the case C2 specifically.
We encounter this case in our work on the multi-vehicle wireless testbed [10].
In the testbed, each vehicle is equipped with an on-board gyro. In addition,
each vehicle also obtains measurements from an overhead camera. While the
gyro-controller link is hard-wired and hence does not drop packets, the cam-
era communicates to the controller over a wireless link that randomly drops
packets. Thus this situation is identical to the case C2. Our solution to this
problem again adopts the philosophy of using some computation at the sensor
end to combat the effects of the channels. Our architecture is as shown in
Figure 4. We again provide recursive yet optimal designs of the encoders, the
decoder and the controller.

Since the focus of the paper is on presenting the idea of information pre-
processing to counter channel effects in networked control, to simplify the
presenation, for most of the paper we will assume a channel between the sensor
and the controller only. We will, however, revisit the problem for a channel
being present between the controller and the actuator in Section 3.2.3. We
will see that most of the results presented in the paper can easily be carried
over to that case.

The main contribution of the paper is posing and solving the problem of LQG
control across a communication channel as an information transmission prob-
lem. Because of the real-time constraint of the control problem, asymptotic
information theoretic block coding type operations cannot be used. For the
specific cases C1 and C2, we obtain the optimal encoding and decoding strate-
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Fig. 4. The structure of our optimal LQG control solution for the two-sensor case
(Case C2).

Fig. 5. Structure of the joint estimation problem (Case C3).

gies for the purpose of LQG control. The strategies are optimal in the sense
that no other causal strategy can lead to a better performance even though
our strategies only require bounded memory, processing and transmission. As
an intermediate step, we also solve the following problem, that we refer to as
case C3.

• Case C3: Suppose, as shown in Figure 5, two sensors are estimating a pro-
cess jointly while communicating over links that drop packets stochastically.
What information should the sensors exchange?

Related work to this problem has dealt with fusion of data from multiple
sensors and track-to-track fusion. A usual starting point for such works is an
attempt to decentralize the Kalman filter as, e.g., in [33]. However this ap-
proach requires that data about the global estimate be sent from the fusion
node to the local sensors. This difficulty was first overcome in [34,35] and
further in [11] where both the measurement and time update steps of the
Kalman filter were decentralized. Alternative approaches for data fusion from
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many nodes include using the Federated filter [6], Bayesian methods [9], a scat-
tering framework [21], algorithms based on decomposition of the information
form of the Kalman filter [17] and so on.

However these approaches assume a fixed communication topology among the
nodes with a link, if present, being perfect. In our case, packets of information
are dropped randomly by the communication channels. This random loss of
information reintroduces the problem of correlation between the estimation
errors of various nodes [4] and renders the approaches proposed in the liter-
ature as sub-optimal. An approach to solve this problem was proposed in [5]
in the context of track-to-track fusion through exchange of state estimates
based on each sensor’s own local measurements but the specific scheme that
was used was not proven to be optimal. It was subsequently proven in [7] that
the technique was based on an assumption that was not met in general. We
wish to address this problem of finding the optimal global estimate for each
node in the case when there are communication channels present between the
nodes and packets of information are being randomly dropped. Once again,
we disallow approaches such as transmitting all the measurements taken by
each node each time communication is possible because they can potentially
entail transmitting arbitrarily large amounts of data. Instead we will propose
a recursive yet optimal strategy.

This paper is organized as follows. We begin in the next section by posing
the LQG problem in a packet-based setting. We then discuss a separation
between control and estimation costs, and present an optimal solution to the
estimation problem. We discuss some extensions to the algorithm. Finally, we
analyze the stability of our system and compare its performance with some
other approaches in the literature.

2 Problem Formulation

Consider a discrete-time linear system evolving according to

xk+1 = Axk +Buk + wk, (1)

where xk ∈ Rn is the process state, uk ∈ Rm is the control input and wk is
process noise assumed to be white, Gaussian, and zero mean with covariance
matrix Qw

1 . The initial condition x0 is assumed to be independent of wk

and to have mean zero and covariance matrix Q0. The state of the plant is

1 The results continue to hold for time-varying systems, but we consider the time-
invariant case to simplify the presentation.
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measured by two sensors according to the equations

yi
k = Cixk + vi

k i = 1, 2. (2)

The measurement noises vi
k’s are assumed white, zero-mean, Gaussian (with

covariance matrix Qi
v) and independent of the plant noise wk and of each

other. Note that substituting C2 = 0 and Q2
v = 0 would reduce the case C1 to

be a special case of C2. Hence, from now on, we will carry out the derivation
for case C2 only and adapt the results for the case of one sensor. Each sensor
communicates its own measurements (or some function of the measurements)
to the controller. We impose the constraint that the function communicated
should be a finite vector, whose size does not increase with time. Sensor 1
communicates over channel 1 that randomly drops packets while sensor 2
utilizes channel 2 that is perfect. For the moment we ignore delays and packet
reordering in channel 1; it will be shown that these effects can be accounted
for with time-stamping and a slight modification to our design. Hence at each
time step k,

• A packet containing some function of the measurements is created at both
the sensors. We do not specify in advance what data these packets will
contain.

• The packets are sent across the link.
• The packet over channel 1 is either received instantaneously, or dropped,

probabilistically.

The packet dropping in channel 1 is a random process. We refer to indi-
vidual (i.e. deterministic) realizations of this random process as packet drop
sequences. The packet drop sequence P is a binary sequence {ηk}

∞
k=0

in which
ηk takes the value “received” if the link delivers the packet at time step k, and
“dropped” otherwise.

We assume sufficient bits per packet and a high enough data rate so that
quantization error is negligible 2 . We also assume that enough error-correction
coding is done within the packets so that the packets are either dropped or
received without error. The absolutely optimal LQG performance achievable is
obviously given by the classical LQR controller/Kalman estimator pair. How-
ever, this design does not respect the packetized nature of the communication.
Specifically, the controller requires continual access to the Kalman filter out-
put, which in turn requires continual access to the measurements from both
the sensors. This access might not be always possible because of data loss

2 This assumption merely means that a sufficient number of bits is available so
that the effect of quantization error is swamped by the effect of the process and
the measurement noises. We do not assume an infinite number of bits, so that
strategies based on interleaving of bits to transmit an infinite amount of data are
not admissible.
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in the communication link. In order to make the class of controllers that are
allowed more precise, we introduce the following terminology. Denote by si

k

the finite vector transmitted from the sensor i to the controller at time step
k. By causality, si

k can depend (possible in a time-varying manner) on yi
0, y

i
1,

· · · , yi
k, i.e., si

k = f i
k (yi

0, y
i
1, · · · , y

i
k) . The information set, Ik available to the

controller at time k is the union of two sets I1
k and I2

k defined by

I1

k = {s1

j |∀j s.t. ηj = received} I2

k = {s2

j |∀j = 0 · · ·k}

Also denote by tl(k) ≤ k the last time-step at which a packet was delivered
over link L1. That is

tl(k) = max{j ≤ k | ηj = “received”}.

The maximal information set, Imax
k at time-step k is then the union of I2

k and
the set I1,max

k defined by

I
1,max

k = {y1

j | 0 ≤ j ≤ tl(k)}.

The maximal information set is the largest set of output measurements on
which the control at time-step k can depend. In general, the set of output
measurements on which the control depends will be less than this set, since
earlier packets, and hence measurements, may have been dropped. As stated
earlier, the only restriction we impose is that the vectors si

k not increase in
size as k increases. We will call the set of f i

k’s which fulfill this requirement as
F. Without loss of generality, we will only consider information-set feedback
controllers, i.e., controllers of the form uk = u(Ik, k). The control input uk is
transmitted to the actuator and applied to the process. We denote the set of
control laws allowed by U . We shall assume perfect knowledge of the system
parameters A, B, C, Qw and Qi

v’s at the controller. Moreover we assume that
the controller (and the decoder) have access to the previous control signals u0,
u1, · · · , uk−1.

We can thus pose the packetized LQG problem as:

min
u∈U,f i∈F

JK(u, f i, P1, P2) = E

[

K
∑

k=0

(

uT
kQ

cuk + xT
kR

cxk

)

+ xT
K+1P

c
K+1xK+1

]

.

(3)
Here K is the horizon on which the plant is operated and the expectation is
taken over the uncorrelated variables x0, {wk} and {vi

k}. Note that the cost
functional J above depends on the random packet-drop sequence P . However,
we do not average across packet-drop processes; the solution we will present
is optimal for arbitrary realizations of the packet dropping process. We now
present our solution to the problem.
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3 Optimal Encoder and Decoder Design

Recall that we wish to construct the optimal control input based on the in-
formation set Imax

k , but we have not yet specified how to design f i
k’s that

will allow the controller to compute that. If channel 1 does not drop packets,
sending the current measurement yi

k in the current packets is sufficient. When
channel 1 randomly drops packets, a náıve solution would be to send the en-
tire history of the output variables at each time step. This would certainly be
an optimal solution, however, as mentioned earlier, this is not allowed since
it requires increasing data transmission as time evolves. Surprisingly, we can
achieve performance equivalent to the náıve solution using a constant amount
of transmission, and memory. To this end, we first state the following separa-
tion principle.

Proposition 1 (Separation) Consider the packet-based optimal control prob-
lem defined in section 2. Suppose that both the sensors transmit all the previous
measurements at every time step, so that the decoder has access to the maximal
information set Imax

k at every time step k. Then, for an optimizing choice of
the control, the control and estimation costs decouple. Specifically, the optimal
control input at time k is calculated by using the relation

uk = ˆ̄uk|Imax

k
= −

(

Rc
e,k

)−1

BTP c
k+1Ax̂k|Imax

k
,

where ūk is the optimal LQ control law while α̂k|Imax

k
denotes the lms estimate

of α given the information set Imax
k and the previous control laws u0, · · · , uk−1.

PROOF. The proof is along the lines of the standard separation principle
(see, e.g., [12]) and is omitted for space constraints. 2

There are two reasons this principle is useful to us:

(1) The controller design part of the problem is now solved. The optimal
controller is the solution to the LQ control problem.

(2) The optimal controller does not need to have access to the information
set Imax

k at every time step k. The encoders and the decoder only need
to ensure that the controller receives the quantity ˆ̄uk|Imax

k
, or equivalently,

x̂k|Imax

k
.

We now propose an algorithm that requires a constant amount of memory and
transmission, yet allows the controller to have access to x̂k|Imax

k
at every time

step.
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3.1 Optimal Transmission and Estimation Algorithm

Let x̂i
k|l denote the estimate of xk based on all the measurements of sensor i

up to time l and all previous control inputs. Denote the corresponding error
covariance by P i

k|l . Also denote by x̄i
k|l the estimate of xk based on all the

measurements of sensor i up to time l while assuming that no control input
was applied as xk evolved according to (1). x̄i

k|l can be evaluated through a
filter that is identical to a Kalman filter except for the application of the
control input during the time update step. We will call such a filter a modified
Kalman filter. Note that the calculation of the quantity P i

k|l is identical for

both the Kalman filter and the modified Kalman filter even though P i
k|l does

not stand for the estimate error covariance in the case of the modified Kalman
filter.

(1) Encoder for sensor 1: At each time step k,
• Obtain measurement y1

k and run a local modified Kalman filter to obtain
x̄1

k|k and P 1
k|k.

• Calculate λ1
k =

(

P 1
k|k

)−1

x̄1
k|k −

(

P 1
k|k−1

)−1

x̄1
k|k−1

.
• Calculate global error covariance matrices Pk|k and Pk|k−1 using

(

Pk|k

)−1

=
(

Pk|k−1

)−1

+
(

C1
)T (

Q1

v

)−1 (

C1
)

+
(

C2
)T (

Q2

v

)−1 (

C2
)

Pk|k−1 =APk−1|k−1A
T +Qw.

• Obtain γk =
(

Pk|k−1

)−1

Ak−1Pk−1|k−1.

• Finally calculate i1k = λ1
k + γki

1
k−1 with i1−1 = 0 and transmit it.

(2) Encoder for sensor 2: At each time step k, transmit the measurement y2
k.

(3) Decoder: At each time step k,
• Use y2

k to come up with i2k using an algorithm similar to the one followed
by the encoder for sensor 1.

• Maintain a local variable x̂dec
k which is updated as follows.

(a) If ηk = received, both links L1 and L2 have successfully transmit-

ted packets. In that case, calculate ψk =
(

Pk|k−1

)−1

Buk−1+γkψk−1

with ψ0 = 0 and obtain the estimate through

(

Pk|k

)−1

x̂dec
k = i1k + i2k + ψk.

(b) If ηk = dropped, only L2 has transmitted the packet. In this case,
propagate the estimate x̂dec

k−1 using the measurement y2
k and the

control uk−1 through a Kalman filter.
The variable x̂dec

k is the estimate of the decoder.

Proposition 2 (Optimal Estimation) In the above algorithm, x̂dec
k = x̂k|Imax

k
.
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PROOF. Consider a centralized filter that has access to measurements from
a sensor of the form

yk = Cxk + vk

where

C =







C1

C2





 vk =







v1
k

v2
k





 . (4)

Let R be the covariance matrix of the noise vk. Since R is block-diagonal, the
measurement update equations of the Kalman filter are

(

Pk|k

)−1

=
(

Pk|k−1

)−1

+ CTR−1C

=
(

Pk|k−1

)−1

+
∑

i

[

(

P i
k|k

)−1

−
(

P i
k|k−1

)−1
]

(

Pk|k

)−1

x̂k|k =
(

Pk|k−1

)−1

x̂k|k−1 + CTR−1yk

=
(

Pk|k−1

)−1

x̂k|k−1 +
∑

i

[

(

P i
k|k

)−1

x̂i
k|k −

(

P i
k|k−1

)−1

x̂i
k|k−1

]

.

Recognizing that the time update equations are

Pk|k−1 = APk−1|k−1A
T +Qw, x̂k|k−1 = Ax̂k−1|k−1 +Buk−1,

we can write
(

Pk|k

)−1

x̂k|k =
∑

i

I i
k + Ψk.

The term I i
k is the contribution of the measurements of the i-th sensor and is

given by

I i
k = Λi

k + ΓkΛ
i
k−1 + ΓkΓk−1Λ

i
k−2 + · · ·+ (ΓkΓk−1 · · ·Γ1) Λi

0,

where

Λi
k =

(

P i
k|k

)−1

x̄i
k|k −

(

P i
k|k−1

)−1

x̄i
k|k−1, Γk =

(

Pk|k−1

)−1

APk−1|k−1.

The term Ψk is the contribution of the control input and can be calculated
recursively through

Ψk =
(

Pk|k−1

)−1

Buk−1 + ΓkΨk−1,

with Ψ0 = 0. In the above derivation, we have used the fact that x0 was zero
mean and thus x̂0|−1 = 0. The covariance matrices can be calculated offline.
Thus, the information needed from sensor i at time step k is precisely I i

k. Now
for the case when ηk = received, the decoder in the algorithm has access to
i1k and i2k that are the same as I1

k and I2
k . Thus it can calculate the centralized

Kalman filter output x̂k|k which is x̂k|Imax
. For the case when ηk = dropped,
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the decoder propagates the best Kalman filter estimate x̂k−1|k−1 with sensor
2’s measurement. Thus in this case too, x̂dec

k = x̂k|Imax 2

Proposition 2 presents the solution to the estimation problem in the case C3

mentioned in Section 1 since we can use an encoder and a decoder described in
the algorithm at each sensor. Moreover, taken together, Propositions 1 and 2
solve the packet-based LQG control problem posed in Section 2.

Proposition 3 (Optimal Packet-Based LQG Control) For the packet-
based optimal control problem stated in section 2, an LQR state feedback design
together with the optimal transmission-estimation algorithm described above
achieves the minimum of J(u, f i, P ) for any P .

Remarks:

(1) Note that the computation and memory required for calculating I i
k does

not grow with time since we can use the recursion I i
k = Λi

k + ΓkI
i
k−1.

(2) The information vector I i
k ‘washes away’ the effect of any previous packet

losses. If ηk = received, x̂k|k is calculated as if all the previous measure-
ments from both sensors were available.

(3) We have made no assumption about the packet dropping behavior. The
algorithm provides the optimal estimate based on Imax

k for an arbitrary
packet drop sequence, irrespective of whether the packet drop can be
modeled as an i.i.d. process (or a more sophisticated model like a Markov
chain) or whether its statistics are known or unknown to the plant and
the controller.

(4) We do not assume knowledge of the cost matrices Qc and Rc at the
sensor end. Thus the cost function (and hence the optimal controller)
can be changed at will without affecting the sensor/encoder operation.
This is important, e.g., in our MVWT work where the matrices Qc and
Rc are user-specified while the encoder code is much harder to change.

3.2 Extensions and Special Cases

We now discuss the application of the algorithm to some special cases and
generalizations.

3.2.1 The single sensor case:

For case C1, the algorithm reduces to the following:

12



• The encoder (at the sensor end) receives as input the measurement yk. It
runs the modified Kalman filter and transmits the output x̄k|k of this filter
across the link.

• The decoder (at the controller end) maintains two variables: a variable ψk

that takes into account the effect of the control inputs, and a local variable
x̂dec

k that is updated as follows:
· If ηk = received , the decoder receives ik, and sets x̂dec

k = x̄k|k + ψk.
· If ηk = dropped , then the decoder implements the linear predictor:

x̂dec
k = Ax̂dec

k−1 + ψk. (5)

3.2.2 Presence of delays:

The solution can readily be extended to the case when the channel applies a
random delay to the packet so that packets might arrive at the decoder delayed
or even out-of-order, if we assume that there is a provision for time-stamping
the packets sent by the encoder. For ease of notation, we present the solution
for optimal asynchronous estimation for the case C1. The case C2 is similar. At
each time step, the decoder will face one of four possibilities, and will update
its estimate as described below:

• It receives x̄k|k. It uses this to calculate the estimate according to x̂dec
k =

x̄k|k + ψk.
• It does not receive anything. It uses the predictor equation (5) on x̂dec

k−1.
• It receives x̄m|m while at a previous time step, it has already received x̄n|n,

where n > m. It discards x̄m|m and uses (5) on x̂dec
k−1.

• It receives x̄m|m and at no previous time step has it received x̄n|n, where
n > m. It uses x̄m|m to calculate x̂dec

m and obtains x̂dec
k through (5).

3.2.3 Channel between the controller and the actuator:

As pointed out in [8,13] if we have a channel between the controller and the
plant, the separation principle would still hold, provided there is a provision
for acknowledgment from the receiver to the transmitter for any packet suc-
cessfully received over the channels. Since the decoder is assumed to have
access to the control input applied at every time step, it is apparent that our
algorithm can easily be generalized to this case. We can also ask the question
of the optimal encoder-decoder design of the controller-actuator channel. The
optimal decoding at the actuator end will depend on the information that is
assumed to be known to the actuator (e.g. the cost matrices Q and R and the
measurements from the sensor). Design of the decoder for various information
sets is an interesting problem, however it is beyond the scope of this paper.
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3.2.4 Multiple packet dropping channels:

The algorithm, as proposed, does not extend to multiple packet dropping
channels. The crucial assumption used in the algorithm that prevents this ex-
tension is that the encoder for sensor 1 uses the fact that sensor 2 will transmit
its information at every time step. For multiple channels, this assumption will
not be satisfied. Extension of the algorithm to such cases remains an open
problem.

4 Analysis of the Proposed Algorithm

In this section, we model the channel erasures as occurring according to a
Markov chain and analyze the stability and performance of our design. Thus
the channel exists in either of two states, state 1 corresponding to a packet drop
and state 2 corresponding to no packet drop and it transitions probabilistically
between these states according to the transition probability matrix Q. Note
that i.i.d. drops can be handled by a special choice of Q. We assume strict
causality in the Kalman filter used by the encoder. Thus to calculate the
estimate of xk, only the measurements till time step k−1 are used. The analysis
for the causal case is similar. Finally we assume that (A,B) is stabilizable and
the pair (A,C) is detectable, where C is defined in (4). We will denote the
Kronecker product of matrices A and B by A⊗B.

We begin with the stability analysis. Denote by yk the vector formed by stack-
ing y1

k and y2
k. We have three dynamical systems. The plant state xk evolves as

in (1). The state x̂k of a centralized Kalman filter with access to measurements
from both sensors at every time step would evolve as

x̂k+1 = Ax̂k +Buk +Kc
k (yk − Cx̂k) .

Finally the state x̂dec
k of the estimator at the decoder evolves according to

x̂dec
k+1 =







Ax̂dec
k +Buk +Kd

k

(

y2
k − C2x̂dec

k

)

channel in state 1

x̂k+1 otherwise.

Denote ek = xk − x̂k and tk = x̂k − x̂dec
k . Since uk = Fkx̂

dec
k , (1) implies

xk+1 = (A +BFk)xk + wk − BFk (tk + ek) .

Since (A,B) is stabilizable and Fk is the optimum control law, the system
would be stable in the bounded covariance sense as long as the disturbances
wk, tk and ek have bounded covariances. We assume the noise wk has bounded
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covariance matrix. Also ek has bounded covariance matrices by our detectabil-
ity assumption. Finally tk evolves according to

tk+1 =







(

A−Kd
kC

2
)

tk + L1(ek) + L2(v1
k) + L3(v3

k) channel in state 1

0 otherwise,
(6)

where Ln(β) denotes a term linear in β. Again note that vi
k’s and ek have

bounded covariance. For tk to be of bounded variance, the Markov jump sys-
tem of (6) needs to be stable. Finally, since our controller and encoder/decoder
design is optimal, if the closed loop is unstable with our design, it is not sta-
bilizable by any other design. We can thus say the following.

Proposition 4 (Stability Condition) Consider the control problem defined
in Section 2 in which the packet erasure channel is modeled as a Markov
chain with transition probability matrix Q = [qij]. Let the matrix pair (A,B)
be stabilizable and the matrix pair (A,C) be detectable. The system is stabi-
lizable, in the sense that the variance of the state is bounded, if and only if
q22|λmax

(

Ā
)

|2 < 1, where λmax

(

Ā
)

is the maximum magnitude eigenvalue of

the unobservable part of matrix A when (A,C2) is put in the observer canonical
form. Further, if the system is stabilizable, one controller and encoder/decoder
design that stabilizes the system is given in Proposition 3.

Using the results of [16], we can also calculate the total quadratic cost incurred
by the system for the infinite-horizon case (the case when K → ∞ in (3)) if
we make the additional assumption that the Markov chain is stationary and
regular. We state the result for the case C1. We consider the cost

J∞ = lim
K→∞

E
[

xT
KR

cxK + uT
KQ

cuK

]

= trace (P∞
x Rc) + trace (P∞

u Qc) , (7)

where P∞
x = limK→∞E

[

xKx
T
K

]

and P∞
u = limK→∞E

[

uKu
T
K

]

. We see that

P∞
x =

[

I 0 0

]

P∞















I

0

0















P∞
u = F

[

I −I −I

]

P∞















I

−I

−I















F T ,

where P∞ = P̃1 + P̃2 and P̃ =
[

vec(P̃1)
T vec(P̃2)

T

]T

. Then, it can be shown

that P̃ is the unique solution to the linear equation

P̃ =
(

QT ⊗ I
)







A1 0

0 A2





 P̃ +
(

QT ⊗ I
)













π1 0

0 π2





 ⊗ I





G.
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In the above equation, Ai = Ai ⊗Ai, and G =
[

vec(G1)
T vec(G2)

T

]T

, where

A1 =















A +BF −BF −BF

A−KC 0 0

0 −KC A















A2 =















A+BF −BF −BF

A−KC 0 0

0 0 0















B1 =















I 0

I −K

0 −K















B2 =















I 0

I −K

0 0















Gi = Bi







Qw 0

0 Qv





 BT
i .

Example

We now consider some examples to illustrate the performance of our algorithm.
First, we consider the example system considered by Ling and Lemmon in [14].
The system evolves as

xk+1 =







0 −2

1 −1





 xk +







2

1





 uk +







2

1





wk.

There is only one sensor of the form

yk =
[

0 1

]

xk.

The process noise wk is zero mean with unit variance and the packet drop
process is i.i.d. The cost considered is the steady state output error limK→∞ y2

K.

[14] assumes unity feedback when packets are delivered and gives an optimal
compensator design when packets are being lost.

On analyzing the system with our algorithm, we observe that our algorithm
allows the system to be stable up to a packet drop probability of 0.5 while
the optimal compensator in [14] is stable only if the probability is less than
0.25. Also if we analyze the performance we obtain the plot given in Figure 6.
The performance is much better throughout the range of operation for our
algorithm, even if we assume unity feedback in our algorithm. This shows that
the difference in performance is mainly due to the novel encoding-decoding
algorithm proposed.

In the next example, we consider the same system being observed through two
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Our algorithm: LQ optimal control

Ling and Lemmon algorithm

Fig. 6. Comparison of performance for our algorithm with the one obtained using
optimal compensator.
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Fig. 7. Comparison of performance for the two sensor case.

sensors of the form

y1

k =
[

1 0

]

xk + v1

k y2

k =
[

0 1

]

xk + v2

k.

The sensor noises are zero mean with variance 10 and 1 respectively. We
consider the cost function limK→∞ (y2

K)
2
. Figure 7 shows the simulated per-

formance of our algorithm as a function of the packet loss probability. We
also plot the performance for a hypothetical sensor that received information
from both sensors without any packet drop and for a scheme in which sensors
exchange only measurements. It can be seen that even in this very simple case,
our algorithm can lead to a performance gain of up to 40% over the strategy
of using no encoder.
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5 Conclusions and Future Work

In this paper, we considered the problem of optimal LQG control when the
sensor and controller are communicating across a channel or a network. We
modeled the link as a switch that drops packets randomly and proved that a
separation exists between the optimal estimate and the optimal control law.
For the optimal estimate, we identified the information that the sensor should
provide to the controller. This can be viewed as constructing an encoder for
the channel. We also designed the decoder that uses the information it receives
across the link to construct an estimate of the state of the plant. The proposed
algorithm is recursive yet optimal irrespective of the packet drop pattern. For
the case of packet drops occurring according to a Markov chain, we carried
out stability and performance analysis of our algorithm.

The work can potentially be extended in many ways. One obvious extension is
to consider multiple sensors and communication links. Another intriguing pos-
sibility is considering the effect of allowing only a limited number of bits in the
packet. The work of Sahai [36] seems relevant in this direction. However, from
the view of optimal control, this issue has to be examined in greater detail.
Extensions to decentralized control are another exciting avenue of research.
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