Krein Space Papers

  1. B. Hassibi and T. Kailath, A Krein space interpretation of the Kalman-Yakubovich-Popov lemma, submitted to Systems and Control Letters.

  2. B. Hassibi, T. Kailath and A.H. Sayed, Array algorithms for H-infinity estimation, IEEE Transactions on Automatic Control, vol. 45, no. 4, April 2000, pages 702-706.

  3. B. Hassibi, T. Kailath and A.H. Sayed, Array algorithms for H-2 and H-infinity estimation, to appear in Applied and Computational Control, Signals and Circuits, 1997.

  4. A.H. Sayed, B. Hassibi and T. Kailath, Inertia conditions for the minimization of quadratic forms in indefinite metric spaces, in Operator Theory: Advances and Applications, I. Gohberg, P. Lancaster and P.N. Shivakumar, Eds., pp. 309-347, Operator Theory: Advances and Applications, Vol. 87, Birkhauser, 1996.

  5. A.H. Sayed, B. Hassibi and T. Kailath, Inertia properties of indefinite quadratic forms, IEEE Signal Processing Letters, vol 3., no. 2, pp. 57-59, Feb. 1996.

  6. B. Hassibi, A.H. Sayed and T. Kailath, Linear estimation in Krein spaces - part I: Theory, IEEE Transactions on Automatic Control, vol. 41, no. 1, pp. 18-33, Jan. 1996.

  7. B. Hassibi, A.H. Sayed and T. Kailath, Linear estimation in Krein spaces - part II: Applications, IEEE Transactions on Automatic Control, vol. 41, no. 1, pp. 34-49, Jan. 1996.

  8. A.H. Sayed, B. Hassibi and T. Kailath, Inertia conditions for the minimization of quadratic forms in indefinite metric spaces, Proceedings of the 1995 American Control Conference, pp. 4389-4393, Seattle, WA, Jun. 1995.

  9. B. Hassibi, A.H. Sayed and T. Kailath, H-infinity filtering as Kalman filtering in Krein space, Proceedings of the Rockwell Symposium, Feb 1994, Anaheim, CA.

  10. B. Hassibi, A.H. Sayed and T. Kailath, Recursive linear estimation in Krein spaces with applications to H-infinity problems, Systems and Networks: Mathematical Theory and Applications, Vol. 2, U. Helmke, R. Mennicken and J. Saurer, Eds., pp. 703-707, Akademie Verlag, 1994.

  11. T. Kailath, B. Hassibi and A. H. Sayed, H-infinity filtering is just Kalman filtering in Krein space, in Computing and Intelligent Systems, eds. S. Keerthi, Y. Narahari and N. Viswanadham, Tata McGraw-Hill Publishing Co. Ltd., pp. 7-15, New Delhi, 1993.