# On the Capacity of Wireless Erasure Networks

Radhika Gowaikar, Amir F. Dana, Ravi Palanki, Babak Hassibi and Michelle Effros Dept. of Electrical Engineering, Caltech Pasadena, CA

{gowaikar, amirf, palanki, hassibi, effros}@caltech.edu

Abstract — We determine the capacity of a certain class of wireless erasure relay networks. We first find a suitable definition for the "cut-capacity" of erasure networks with broadcast at transmission and no interference at reception. With this definition, a max-flow min-cut capacity result holds for the capacity of these networks.

# I. Introduction

For wireline networks, the max-flow min-cut result gives the network capacity between a single source and a single destination as well as in some multicast scenarios [1]. In this paper we consider a certain class of erasure wireless networks and show a max-flow min-cut capacity result for it. A detailed proof as well as extensions to some multicast scenarios can be found in [2].

# II. Model

We model the network by a directed acyclic graph G=(V,E). Each edge  $(v_i,v_j)\in E$  represents a memoryless erasure channel from  $v_i$  to  $v_j$  with erasure probability  $\epsilon_{i,j}$  associated with it. All channels are assumed independent and operate without delay.

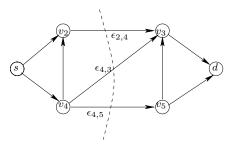


Figure 1: Example of a network. The capacity of the cut marked with a dotted line is  $1 - \epsilon_{2,4} + 1 - \epsilon_{4,3}\epsilon_{4,5}$ 

Let  $s=v_1\in V$  be the source node that wishes to transmit a message to  $d=v_{|V|}(\neq s)\in V$  which is the destination node. The other nodes simply have to aid this communication.

We incorporate broadcast in our network by insisting that vertex  $v_i$  transmit the same symbol on all outbound edges. This implies that  $v_5$  must transmit the same message on edges  $(v_5, v_3)$  and  $(v_5, v_6)$ . For reception, we assume that  $v_i$  receives the symbols from each incoming edge without interference. This means that  $v_2$  receives messages from links  $(v_1, v_2)$  and  $(v_4, v_2)$  without their acting as interference for each other.

Finally, we assume that the decoder d knows the exact erasure pattern that occurred on each link of the network. This

assumption requires a serious overhead of data transmission for a regular bit erasure channel. However, if we assume that the links are packet erasure channels, this assumption is reasonable for very long packets.

## III. Definitions

An s-d cut is defined as a partition of the vertex set V into two subsets  $V_s$  and  $V_d = V - V_s$  such that  $s \in V_s$  and  $d \in V_d$ . Clearly, an s-d cut is determined simply by  $V_s$ . For the s-d cut given by  $V_s$ , let the cutset  $E(V_s)$  be the set of edges defined below

$$E(V_s) = \{(v_i, v_j) | (v_i, v_j) \in E, v_i \in V_s, v_j \in V_d\}$$

Denote by  $W(V_s)$  the value of an s-d cut given by  $V_s$ . We define  $W(V_s)$  below.

$$W(V_s) = \sum_{i:(v_i, v_j) \in E(V_s)} \left( 1 - \prod_{j:(v_i, v_j) \in E(V_s)} \epsilon_{i,j} \right) \tag{1}$$

Consider this definition of the value of the cut or the "cut-capacity". In the wireline case, the value of the cut is simply the sum of the capacities of each edge in  $E(V_s)$ . Since our system model incorporates broadcast the cut-capacity is the sum of the capacities of each broadcast system that operates across the cut. This gives the outer summation in the definition of  $W(V_s)$  above. For the capacity of each broadcast system that operates across the cut, assume that the receiver nodes within that system get to co-operate and hence have an effective erasure probability  $\epsilon_{\rm eff}$  equal to the product term in (1). Hence the capacity of each broadcast system is  $(1 - \epsilon_{\rm eff})$  which gives the quantity inside the summation.

In Fig. (1), the cut given by  $V_s = \{s, v_2, v_4\}$  is marked with a dotted line. We have  $E(V_s) = \{(v_2, v_3), (v_4, v_3), (v_4, v_5)\}$ . This consists of the broadcast system emanating from  $v_4$ , viz.,  $\{(v_4, v_3), (v_4, v_5)\}$  and the (degenerate) broadcast system emanating from  $v_2$ , viz.,  $\{(v_2, v_3)\}$ . The capacity of the former is  $1 - \epsilon_{4,3}\epsilon_{4,5}$  and that of the latter is  $1 - \epsilon_{2,4}$ . Hence  $W(V_s) = 1 - \epsilon_{4,3}\epsilon_{4,5} + 1 - \epsilon_{2,4}$ .

# IV. MAIN RESULT

We can then prove the following max-flow min-cut theorem.

**Theorem 1.** The capacity of the erasure relay network described above is given by the value of the cut with minimum value.

$$C = \min_{V_s} W(V_s)$$

where  $V_s$  determines an s-d cut.

# References

- R. Ahlswede, N. Cai, S.-Y. R. Li, R. W. Yeung, "Network information flow," *IEEE Trans. Info. Theory*, vol. 46, pp. 1204–1216, 2000.
- [2] A. F. Dana, R. Gowaikar, R. Palanki, B. Hassibi, M. Effros, "On the Capacity of Wireless Erasure Broadcast Networks," to be submitted to IEEE Trans. Info. Theory

 $<sup>^1{\</sup>rm This}$  work was supported in part by the National Science Foundation under grant no. CCR-0133818, by the office of Naval Research under grant no. N00014-02-1-0578, and by Caltech's Lee Center for Advanced Networking.