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General Overview

Multiple antennas provide many exciting possibilities for high data ratewireless communications, since they can� signi�cantly boost channel capacity� lower the probability of errorof a wireless communications link. (Key: spatial diversity)Applications abound and include:� wireless LAN, �xed wireless access, mobile wireless, wirelessInternet, etc.
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Why Multiple Antennas?Traditionally, it was believed that there are two ways to increase channelcapacity:� increase transmit power: C = log(1 + �)� increase bandwidth: C = limB!1B log(1 + �=B) = �Neither of which is particularly exciting :(But what about mutliple antennas? Well, pre-1995:� fading is bad, scattering environment is bad� line-of-sight is good� beam-forming, angle-of-arrival estimation are the way to go� capacity grows logarithmically in number of receive antennas
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Things changed around 1995 (Foschini, Telatar)

Now we know better:� Fading is good! Rich-scattering environment is good!� Capacity increases linearly in the minimum of the number of receiveand transmit antennas.

This is now an exciting solution :)
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Research Challenges

� signal processing� information theory� coding theory (space-time codes)� experimental | the propogation environment{ Rayleigh vs. Rician fading, rich-scattering vs. line-of-sight� RF circuits, antenna design� system issues, network issues, multiple access, etc.
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Outline

Will consider the �rst three di�erent aspects� Signal Processing:{ an e�cient square-root algorithm for Bell Labs LayeredSpace-Time (BLAST)� Information Theory:{ autocapacity { information transmission at Shannon capacity viacoding over a single coherence interval� Coding Theory:{ multi-antenna signal constellation design via grouprepresentation theory
6
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Signal Processing

� an e�cient square-root algorithm for Bell Labs LayeredSpace-Time (BLAST)
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Basic Model for BLAST� Consider M signals impinging on an array of N (N �M) receiversvia a rich scattering environment.
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� The transmitted signals may come from an array of transmitantennas (as in BLAST), or from M separate transmit antennas (asin the uplink of a wireless LAN, etc.).x = Hs+ v:
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Basic Idea of BLASTSince maximum-likelihood detection out of the question, Foschini et alsuggested the following three-step procedure:� Estimate the channel matrix via training sequence� Find MMSE nulling vectors and optimal detection order{ determine \strongest" signal (the one with the smallest MMSE)and its corresponding nulling vector{ consider de
ated channel matrix and �nd next \strongest" signaland nulling vector{ continue� Process the payload{ 1. MMSE nulling, 2. slicing (decoding), 3. symbol cancellation
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Computational ComplexityFor simplicity, let M = N� Channel estimation: 2M2log2LT� Determining the nulling vectors and optimal ordering: 27M4=4{ since we must compute M pseudo-inverses� Processing the payload: 2M2LPTo see what these numbers mean for an actual systems, consider a targetof 1 Mb/s data transmission over a 30 kHz wireless channel:� 1=T = 24:3 ksymbol/sec, 16-QAM� M = N = 14, LT = 32 and LP = 100� Required DSP integrated into a single chip solution
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Flops/burst MegaFlops/s %channel estimation 7,840 1.44 0.65nulling vectors and ordering 1,036,000 190.8 86.3payload processing 156,800 28.9 13.1TOTAL 1,200,000 221.2 100

The dominant portion of the computation involves determining thenulling vectors and optimal ordering. Can this computation be reduced ina numerically stable way?
11
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Have developed an algorithm that� is cost-e�cient: requires only one (implicit) pseudoinversecomputation and has complexity 29M3=3� is numerically stable: is division-free and uses only unitarytransformations� is suitable for implemention in �xed-point, rather than 
oating-pointarchitectures Flops/burst MegaFlops/s %channel estimation 7,840 1.44 2.9nulling vectors and ordering 106,100 19.5 39.1payload processing 156,800 28.9 58.0TOTAL 270,400 49.8 100
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Information Theory

� autocapacity { information transmission at Shannon capacityvia coding over a single coherence interval
13
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Coding for Fading ChannelsConsider the single-antenna additive Gaussian noise fading channel:x = p�sh+ w; h � CN (0; 1); w � CN (0; 1); Ejsj2 = 1Assume a block-fading model: h is �xed for a \coherence-interval" of Ttime samples, after which it changes to an independent value.� If we code over block sizes of length QT (i.e., over Q coherenceintervals), then Shannon theory asserts that for all rates R < C,where C is the Shannon capacity, we can achievePe ! 0 as Q!1:� If we code over only one coherence interval (even if T !1) wecannot achieve Pe ! 0 for any rate R > 0. (Since there is always anonzero probability that the channel is \bad").� In conclusion, for a fading channel, to achieve Shannon capacity, weneed temporal diversity and hence \channel-coding".14
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What about multi-antenna fading channels? Assume M transmit and Nreceive antennas, and a coherence interval of T time samples. Thus:X =q �M SH +W; EtraceSS� = TMwhere H and W are M �N matrix and T �N matrices of independentCN (0; 1) entries, respectively, and S is the T �M signal matrix.� Once more, if we code over Q coherence intervals, we can achievePe ! 0, as Q!1, for all rates less than the Shannon capacity.� It thus appears that to achieve Shannon capacity we still need toresort to channel coding. This can be extremely computationallyintensive in the multi-antenna case. (We already have seen howcomputationally intensive things can get even without channelcoding | BLAST.)
15
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Multi-Antenna Shannon Capacity

� When H is known to the receiver, the so-called perfect knowledgeShannon capacity is given by:C = E log det�IN + �H�HM �

In particular, as M !1:C = N log(1 + �)!� When M !1, the assumption that the receiver knows the channelbecomes less and less tenable, since we require longer and longertraining sequences to identify the channel.� Computing the Shannon capacity in the unknown channel case foran arbitrary M , N , and T is still an \open problem". As T !1,however, the unknown channel capacity approaches the perfectknowledge capacity. 16
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Coding over One Coherence Interval
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� Hold constant:{ total transmit power, �{ number of receive antennas, N{ � = TM = coherence timenumber of transmit antennas� Autocoding: does there exists an autocapacity, Ca, such that forall R < Ca, we have Pe ! 0, as (T;M)!1, but with Q = 1?{ will not work if either T or M is �xed17
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Existence of AutocapacityIs the autocapacity nonzero?
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� Pe ! 0, as Q!1, 8R < C(�; T;M;N).� Since the block-diagonal signal structure is not necessarily optimal:Ca(�; �;N) � supT;M : TM =�C(�; T;M;N):
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Formula for Autocapacity

One can show that the lower bound is, in fact, tight:Ca(�; �;N) = supT;M : TM =�C(�; T;M;N)This allows us to explicitly compute the autocapacity as followsCa(�; �;N) � C(�; LT; LM;N) � C(�; LT;M;N)Letting L!1, the RHS converges to the perfect knowledge Shannoncapacity. Thus Ca(�; �;N) � E log det�IN + �M H�H�Further, letting M !1Ca(�; �;N) = N log(1 + �)
19
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How Many Antennas Do We Need?

Thus, irrespective of �, the value of the autocapacity is equal to theperfect knowledge Shannon capacity. But we do not yet know howmany antennas are required for the autocoding e�ect to kick in.� A partial answer to this question can be provided by studying therandom coding exponent, or the so-called cut-o� rate:R0(T; �;N; p(S)) = � 1T log�ES1;S2 �Z dXpp(X j S1) � p(X j S2)�� ;that allows us to explicitly bound the probability of error, Pe:Pe � exp f�T ln 2 [R0(T; �;N; p(S))�R]g :� Remark: This can be obtained using the union bound applied tothe Cherno� bound on the pairwise probability of error.
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Bounding the Cut-O� Rate

Optimizing the cut-o� rate over the input density p(S) appears to beintractable, so we compute it for the input densities:� Isotropically-distributed unitary matrix: This is capacity-achievingwhen the channel is unknown in the high SNR regime.� Gaussian matrices with i.i.d. elements: This is capacity-achievingwhen the channel is known.In fact, for the above distributions, in addition to the cut-o� rates, wehave also analytically computed the random coding exponent, as well asthe pairwise probability of error.
21
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Random Matrices

The computation of these quantities requires the (asymptotic) eigenvaluedistribution of various classes of random matrices | several of whichwere not known. The techniques involved in determining thesedistributions are quite interesting and have connections to� orthogonal polynomials� the saddlepoint method� Wishart matrices� Hankel operators� hypergeometric functions
22
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Hypergeometric Functions

\Hypergeometric functions are one of the paradises of nineteenthcentury mathematics that remain unknown to mathematicians ofour day. Hypergeometric functions of several variables are an evenbetter paradise: they will soon crop up in about everything."-Gian Carlo Rota
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Isotropically-Distributed Unitary Matrix

An isotropically-distributed n� n unitary matrix 	 is one whoseprobability density function is invariant under pre- or post-multiplicationby any �xed unitary matrix:p(	) = p(�	) = p(	�); 8� s.t. ��� = ��� = IIn particular, for any unit vector �, the vector 	� is equally likely topoint in any direction.

� 	` is not isotropically-distributed for n � 3 in the real case andn � 2 in the complex case� In the complex case, 	` for ` � n has independent eigenvalues
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When does Autocoding Kick In?
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Figure 1: Cuto� rate bounds (bits/symbol) as a function ofM for � = 18dB, � = 2, and N = 1. The dashed lines are the asymptotic cuto� ratebounds (M !1).Even for small values of M the R0 bounds are close to their asymptoticvalues. Thus autocoding takes e�ect for relatively small values of M .28
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Pairwise Probability of Error vs. M
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Figure 2: Pairwise probability of error for isotropicaly distributed signalfor N = 4 receive antennas and � = 18db.
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Pe vs. Transmission Rate
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Figure 3: Upper bound on block probability of error versus transmissionrate (bits/symbol) for random constellation of Unitary Space-Time signals,for N = 4, � = 18 dB, and (T;M) = (2; 1); (4; 2); (8; 4); (16; 7).
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Autocoding and Autocapacity { Summary

� Autocoding { coding within one block without outage. Perfectknowledge Shannon capacity can be achieved.{ Kicks in with even relatively small (T;M).{ Temporal diversity not needed { replaced by spatial diversity.{ Shannon capacity for unknown channel not so important.� Burden is shifted away from channel coding and onto decodingconstellations of matrix-valued signals.{ isotropically-distribued unitary signals are good.� T = 16, M = 7, N = 4, � = 18 dB, R = 5, Pe < 10�9. Constellationsize is 280 = 1024|yikes!� Joint work with T. Marzetta and B. Hochwald.31
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Coding Theory

� multi-antenna signal constellation design via grouprepresentation theory
32
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Constellation Design for Multiple Antennas

The preceding discussions suggest that a crucial issue in multi-antennacommunications is the design of good signal constelations.� One good candidate is a constellation of unitary signals (henceforthUSTM - unitary space-time modulation){ In the known channel case, we shall take T =M (� = 1), so thatthe constellation is composed of M �M unitary matrices:V = fV0; : : : ; VL�1g ; V`V �` = V �` V` = IM
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Multiple-Antenna Di�erential Modulation

In the unknown channel case, one can take � = 2 and employ adi�erential-modulation scheme as follows (Hughes 99, Hochwald andSweldens 99): Si = ViSi�1 = ViVi�1 : : : V0with the same constellation, V, as above. To see why, assume,momentarily, that there is no additive noise. Then, since the channel isconstant over T = 2M time samples:Xi = SiH = ViSi�1H = ViXi�1so that we can decode the i-th signal Vi from Xi and Xi�1, withoutneeding to know the channel matrix, H. When there is additive noise,the maximum-likelihood decoder is given by^Vi = arg min`=0;:::;L�1 kXi � V`Xi�1kF
34
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The quality of a constellation V is determined by the probability of errorof mistaking one symbol of V for another. It can be shown that, at highSNR, the probability of mistaking V` with V`0 is dominantly dependanton the determinant of V` � V`0 .� In particular, we shall measure the quality of a constellation V by�V = 12 min0�`<`0<L jdet(V` � V`0)j1=M

35



'
&

$
%

\Fully Diverse" Constellations

� Our design problem is thus reduced to the following:{ given M and R, �nd a set V of L = 2MR, M �M unitarymatrices, such that the minimum of the absolute value of thedeterminant of their pairwise di�erences is as large as possible.� We shall call any constellation V with the property that thedeterminants of the pairwise di�erences are all nonzero, fully diverse.� The reason is the following: For any channel matrix H,V`H 6= V`0H whenever ` 6= `0In other words, there exists no channel H for which any twoelements of V respond identically.
36
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The Design Problem

The design problem is especially confounded for the following tworeasons:� The space of all M �M unitary matrices is very di�cult toparametrize (it is the so-called complex Steifel manifold).{ in particular, there are M2 real free parameters in any M �Mcomplex unitary matrix.� The objective cost, i.e., the absolute value of a determinant, is not anorm.Moreover, the size of the problem (we are seeking L = 2MR signals)makes an exact solution intractable.
37
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Orthogonal Designs (Tarokh et al, 1998)

� Let x and y be complex numbers such that jxj2 + jyj2 = 1. Then anorthogonal design is the unitary matrix:V = " x �y�y x� #

� Orthogonal designs have the property that any linear combination ofthem is a matrix with orthogonal columns� In particular,det(V1�V2) = det" x1 � x2 �(y1 � y2)�y1 � y2 (x1 � x2)� # = jx1 � x2j2+jy1 � y2j2Thus, the design problem reduces to the design of spherical codes onthe 2-dimensional complex (or 4-dimensional real) sphere. This is awell-studied problem. 38
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Diagonal Constellations� The drawback of orthogonal designs is that they only exist for 2� 2matrices in the complex case, and 4� 4 matrices in the real case.Thus one cannot use them to construct constellations for anarbitrary number of antennas.� To alleviate this, diagonal constellations have been introduced:

V` =
2666664

ej2�u1=L ej2�u2=L . . . ej2�uM=L
3777775
`

;

where u1; : : : ; uM are integers.� Optimization over u1; : : : ; uM yields reasonably good constellations.However, much better constellations may be possible since thediagonal constraint appears to be quite restrictive.39
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Constellations from Groups

To break the logjam, let us investigate the case where V forms a groupunder matrix multiplication.� This has useful practical implications (especially in thedi�erential-modulation scheme) since matrix multiplication can beperformed by table look-up.� The design problem also simpli�es somewhat under the groupassumption, since�V = 12 min0�`<`0<L jdet(V` � V`0)j1=M= 12 min0�`<`0<L ��det(V`) det �I � V �1` V`0���1=M= 12 minI 6=V 2V jdet(I � V )j 1M :
40
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Group RepresentationsOur constellation construction relies on the following crucial result:- any �nite group, G, has a representation with unitary matrices.Take, for example, the L-th order cyclic group:GL = h�j�L = 1i:One representation can be obtained by representing � as ej2�=L. Otherrepresentations can be obtained by representing � as:2666664
ej2�u1=L ej2�u2=L . . . ej2�uM=L
3777775 ;

which yields the diagonal signal constellations introduced earlier.41
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Fixed-Point-Free Groups

� Although our aim is to maximize�V = 12 minI 6=V 2V jdet(I � V )j 1M ;it is at this point not even clear whether, or when, this quantity iszero for a given group G.� Clearly, �V will be nonzero if and only if all the matrices V 6= I haveno eigenvalues at unity.� Groups that have representations with this property are referred toas �xed-point-free groups | an eigenvalue at unity implies V x = x,for some vector x, i.e., that V has a �xed-point.� Therefore we need to search for �xed-point-free groups.

42
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Zassenhaus' Characterization

Zassenhaus in 1936 gave an almost complete characterization of�xed-point-free groups. Here is his result for groups of odd order:Theorem 1 (Zassenhauss) Let G be a �xed point free group of oddorder L. Then there exist integers m and r such that G is isomorphic tothe group Gm;r = h�; � j �m = 1; �M = �t; ����1 = �ri;where(i) L = mM .(ii) M is the smallest integer such that rM � 1mod(m).(iii) gcd(M; t) = 1, where t = mgcd(r�1;m) .
43
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All Odd-Order Fixed-Point-Free Groups

Using Zassenhaus' partial characterization, we have been able to showthe following result.Theorem 2 A �nite group G of odd order, L, is �xed point free if andonly if it is isomorphic to a groupGm;r = h�; � j �m = 1; �M = �t; ����1 = �ri;for some integers m and r such that:(i) L = mM .(ii) M is the smallest integer such that rM � 1mod(m).(iii) gcd(M; t) = 1, where t = mgcd(r�1;m) .(iv) All prime divisors of M divide gcd(r � 1;m).
44



'
&

$
%

The Group Representation

The representation of the group takes the form:V = ��(�)`�(�)k j0 � ` � m� 1; 0 � k �M � 1	 ;where
�(�) =

0BBBBB@
� 0 � � � 00 �r � � � 0... ... . . . ...0 0 � � � �rM�1
1CCCCCA ; �(�) =
0BBBBBBB@

0 1 0 � � � 00 0 1 � � � 0... ... ... . . . ...0 0 0 � � � 1�t 0 0 � � � 0
1CCCCCCCA

and � = ej2�=m.
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Example, M = 3

Let M = 3 and take r = 4 and m = 21. Then we have t = 7, and it canbe veri�ed that conditions (i)-(iv) of the theorem are all satis�ed. Thus,de�ne � = ej2�=21, and set
A =0BB@ � 0 00 �4 00 0 �16

1CCA ; B =0BB@ 0 1 00 0 1�7 0 0
1CCA :

The 63 matrices A`Bk, where 0 � ` � 20 and 0 � k � 2 form a groupunder matrix multiplication and the corresponding �-value can becomputed to be � = 0:3851. This 3-antenna, 63-element, constellation isby one element shy of producing a constellation of rate 2.

46
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G21;4 vs. Diagonal Constellation
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Example, M = 9

Let M = 9. With r = 4 and m = 57 all the conditions of the theorem aresatis�ed. Thus, if we de�ne � = e2�i=57, and set

A =
0BBBBBBBBBBBBBBBBB@

� 0 0 0 0 0 0 0 00 �4 0 0 0 0 0 0 00 0 �16 0 0 0 0 0 00 0 0 �7 0 0 0 0 00 0 0 0 �28 0 0 0 00 0 0 0 0 �55 0 0 00 0 0 0 0 0 �49 0 00 0 0 0 0 0 0 �25 00 0 0 0 0 0 0 0 �43
1CCCCCCCCCCCCCCCCCA

; B = " I8�19 # :

we obtain a 9-antenna, 513-element, constellation (R = 1) with � = 0:36.48
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Even-Order Fixed-Point-Free Groups

� The classi�cation of even-order �xed-point-free groups is slightlymore involved.� In addition to Gm;r, there are �ve other group types.� One interesting even-order �xed-point-free group is SL2(F5), groupof 2� 2 matrices over F5 with determinant unity. This group has120 elements and can be expressed asSL2(F5) = h�; 
 j �2 = 
3 = (�
)5; �4 = 1i:The representation of its generators is given by�(�) = 1p5 " �2 � �3 � � �4� � �4 �3 � �2 # ; �(
) = 1p5 " � � �2 �2 � 11� �3 �4 � �3 #where � = e2�i=5.
49
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M = 2, N = 2 and R = 3:45
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Beyond Groups� Although we have been able to characterize all �xed-point-freegroups, it turns out that such groups are few and far between.� Thus, even though they yield constellations with a very acceptable �,such groups do not exist for any arbitrary M and any target rate, R.� For example, it is not possible to use our theorem to constructconstellations of \close to" rate 1 for matrix dimensions M = 5 andM = 7, since there exist no �xed-point free group representations forM = 5 and M = 7 matrix dimensions that have \close to" L = 32and L = 128 elements, respectively.� Thus, to construct constellations for arbitrary M and arbitrary R, itappears that we need to move beyond the group constructionsconsidered so far.� The group constructions, nonetheless, suggest structures that maybe used to construct good non-group constellations.51
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Performance vs. Diagonal Constellations
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Figure 4: Block-error rate performance for M = 5 transmitter antennasand rate R = 1. The dashed line is the best diagonal construction. Thesolid line is our best M = 5 construction.52
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R = 4 Non-Group Constellations
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Final Remarks� We considered the construction of fully diverse USTM signals thatare suitable for known channel, and unknown channeldi�erential-modulation environments.� We described a construction based on the representation theory of�nite �xed-point-free groups.� Unlike earlier orthogonal designs-based methods, our frameworkallows for any number of antennas.� The special structure of the constellation allows for e�cientdecoding schemes, so that the exhaustive search is not necessary.� For low to moderately high rates, the resulting constellations haveexcellent performance. We are currently investigating theconstruction of very high rate non-group constellations.� Joint work with A. Shokrollahi, B. Hochwald, and W. Sweldens.54
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SummaryMulti-antenna communications has a great potential to increase thecapacity and quality wireless communications. It also presents greatchallenges and many interesting problems.To summarize, let us repeat the outline.� Signal Processing:{ an e�cient square-root algorithm for Bell Labs LayeredSpace-Time (BLAST).� Information Theory:{ autocapacity { information transmission at Shannon capacity viacoding over a single coherence interval.� Coding Theory:{ multi-antenna signal constellation design via grouprepresentation theory. 55



'
&

$
%

Other Work

� In the multiple-antenna area:{ determining the optimal amount of training� Other areas:{ robust estimation and control{ adaptive �ltering{ channel equalization (blind and robust){ neural networks
56
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Additional Material - Not Covered in Talk
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Description of E�cient Square-Root Algorithm
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BLAST Algorithm

1. Find Hy� and P = Hy�(Hy�)�.2. Find the smallest diagonal entry of P and reorder the entries of s sothat the smallest diagonal entry is the last (M -th) one.3. Form the least-mean-squares estimate ^sM = Hy�;Mx.4. Obtain sM (via slicing) from ^sM = Hy�;Mx.5. Cancel the e�ect of sM and consider the reduced-order problem:x� hMsM = H(M�1)s(M�1) + v;whereH(M�1) = h h1 : : : hM�1 i and s(M�1) = h s1 : : : sM�1 iT :6. Continue to �nd H(M�1)y� and P (M�1) = H(M�1)y� (H(M�1)y� )�.

59



'
&

$
%

Computational ComplexityFor simplicity, let M = N .� Channel estimation: 2M2log2LT .� Determining the nulling vectors and optimal ordering: 27M4=4.� Processing the payload: 2M2LP .To see what these numbers mean for actual systems, consider the nexttarget application for BLAST:� 1 Mb/s data transmission over a 30 kHz wireless channel.� 1=T = 24:3 ksymbol/sec, 16-QAM.� M = N = 14, LT = 32 and LP = 100.� Required DSP integrated into a single chip solution.
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Flops/burst MegaFlops/s %channel estimation 7,840 1.44 0.65nulling vectors and ordering 1,036,000 190.8 86.3payload processing 156,800 28.9 13.1TOTAL 1,200,000 221.2 100

The dominant portion of the computation involves determining thenulling vectors and optimal ordering. Can this computation be reduced ina numerically stable way?
61



'
&

$
%

Objectives of the Algorithm

1. The algorithm must be cost e�cient: Is it possible to �nd H(M�1)y�and P (M�1) from Hy� and P , without having to \re-solve" thereduced-order problem all over again?2. The algorithm must be numerically stable and robust.� Avoid \squaring" things (forming H�H, for example, isundesirable). This increases the dynamic range of the quantitiesinvolved, the condition numbers, etc.� Avoid \inverting" things (inverting (�I +H�H) to obtain P isundesirable).� Make as much use as possible of unitary transformations.
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QR DecompositionLet us begin with the QR decomposition:" Hp�IM # = QR = " Q�Q2 #R;where Q is an (N +M)�M matrix with orthonormal columns, and R isM �M and nonsingular. It can be shown thatP 1=2 = R�1 ; Hy� = P 1=2Q�� where P 1=2P �=2 = P:Before addressing the question of how to compute P 1=2 and Q�, let usfocus on:1. How to �nd the smallest diagonal entry of P?2. How to �nd the square-root factor of P (M�1) from P 1=2?3. How to �nd the nulling vectors?
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Answers

1. Since P 1=2P �=2 = P , the diagonal entries of P are simply thesquared lengths of the rows of P 1=2. Thus: to �nd the minimumdiagonal entry of P , we need only to �nd the minimum length row ofP 1=2.2. Suppose now that we have reordered the entries of s so that theM -th diagonal entry of P is the smallest. Consider any unitarytransformation � that rotates (or re
ects) the M -th row of P 1=2 tolie along the direction of the M -th unit vector. In other words,P 1=2� = " P (M�1)=2 P (M�1)=2M0 p1=2M # ;

where p1=2M is a scalar. Then P (M�1)=2 is a square-root of P (M�1).
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3. Suppose that we have repeated the above steps 1 and 2 until P 1=2 istransformed to an upper triangular matrix. Moreover, let q�;i,i = 1; : : : ;M denote the resulting columns of Q�, i.e.,Q� = h q�;1 : : : q�;M i :Then the nulling vectors for the signals s1 to sM are given by:Hy�;i = p1=2i q��;i;where p1=2i denotes the i-th diagonal entry of P 1=2.Conclusion: Once P 1=2 and Q� are computed, there is no need torecompute them for the de
ated channel matrix H(M�1). All theinformation we need is already in P 1=2 and Q�.But what is the best way to compute P 1=2 and Q�? (Inverting R toobtain P 1=2 is undesirable.)
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Summary of Algorithm

1. Compute P 1=2 and Q.� Propagate the following square-root algorithm:2664 1 HiP 1=2ji�10 P 1=2ji�1�ei Qi�1
3775�i = 2664 r1=2e;i 0�Kp;i P 1=2jiAi Qi
3775 ; P 1=2j0 = 1p�I; Q0 = 0

where ei is the i-th unit vector of dimension N , and �i is anyunitary transformation that block lower triangularizes thepre-array. After N steps, we haveP 1=2 = P 1=2jN and Q� = QN :2. Find the minimum length row of P 1=2 and permute it to be the last(Mth) row. Permute s accordingly.66
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3. Find a unitary � such that P 1=2� is block upper triangular:P 1=2� = " P (M�1)=2 P (M�1)=2M0 p1=2M # :

4. Update Q� to Q��.5. The nulling vector for the M -th signal is given by p1=2M q��;M , whereq��;M is the M -th row of Q��.6. Go back to step 3, but now with P (M�1)=2 and Q(M�1)� (the �rstM � 1 columns of Q�).

The complexity of the algorithm can be shown to be 29M3=3.
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Remarks

� The above algorithm satis�es our objectives of cost-e�ciency:{ we have avoided computing the pseudo-inverse (or QRdecomposition) for each de
ated subchannel matrix. Thisreduced the computational complexity from 27M4=4 to 29M3=3,i.e., roughly by a factor of 0:7M .and numerical stability and robustness:{ we have avoided squaring any of the quantities.{ we have avoided computing inverses (and even scalar divisions)altogether.{ we have used unitary transformations as much as possible.
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But what does all this mean for our example (1 Mb/s, 30 kHz channel,24.3 ksymbol/sec, 16-QAM, M = N = 14, LT = 32, LP = 100)? Well,...

Flops/burst MegaFlops/s %channel estimation 7,840 1.44 2.9nulling vectors and ordering 106,100 19.5 39.1payload processing 156,800 28.9 58.0TOTAL 270,400 49.8 100

Thus the total computation has been reduced from 221 MegaFlops/s to50 MegaFlops/s.
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Further Remarks� The prominent component of the algorithm is the use of unitarytransformations which introduce zeros in prescribed entries of givenrow vectors. These can be performed by either using a Householderre
ection, or a sequence of Givens rotations.� In hardware, the sequence of Givens rotations can be implementedusing \division-free" methods, such as the CORDIC method. Theycan also be parallelized by means of a systolic-array-typearchitecture.� The numerical stability of the algorithm makes it attractive forimplementation in �xed-point, rather than 
oating-point,architectures.� Finally, the savings in computational complexity make it possible toimplement the algorithm using a single commercial DSP processor.Thus, there is no need to design a new chip.71
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Further Material Related to Autocapacity
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Matrix Channel with Correlated EntriesWhen the elements of H are correlated the perfect knowledge Shannoncapacity is still given byC = E log det�IN + �H�HM � :If we denote the eigenvalues of H�HM by �1; : : : ; �N , thenC = E log NYi=1 (1 + ��i) = E NXi=1 log (1 + ��i) = NE log (1 + ��)When the elements of H are uncorrelated �! 1 as M !1 and weobtain C = N log(1 + �). When H is rank one (corresponding to a singleplanar wave line-of-site situation), we haveC = log(1 +N�)The general case depends on how \full-rank" H is.73
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How Many Antennas?

� Answer not given by the autocapacity formulas� Partial answer can be provided by studying the random codingexponent Pe � exp f�QT ln2 [E0(T; �; �; p(S))� �R]gwhereE0(T; �; �; p(S)) = � 1T log�ZX �ES np 11+� (XjS)o�1+� dX�Here Q is the number of independent coherence intervals, and R isthe rate of transmission� We are interested in Q = 1, and wish to show that as T !1, theexponent [E0(T; �; �; p(S))� �R] is positive
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The Cuto� Rate

� Joint optimization over p(S) and � is formidable. Therefore, werestrict our attention to � = 1, and \judicious" choices of thedensity p(S).� This leads toPe � exp f�T ln 2 [R0(T; �;N; p(S))�R]g ;whereR0(T; �;N; p(S)) = � 1T log�ES1;S2 �Z dXpp(X j S1) � p(X j S2)��is the so-called cuto� rate.� Remark: This can also be obtained using the union bound appliedto the Cherno� bound on the pairwise probability of error.
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Asymptotic Cuto� Rate

Suppose H is unknown and that the input signals are chosen asisotropically-distributed unitary matrices. ThenlimT!1R0(T; �;N; p(S)) = N� [min(1; � � 1) log(1 + �)+

� log 1 +p1� a�1+�2 !+

j� � 2j log 1 +p1� ap1� a+p1� a�1+� !# ;where � = (��)24(1+��) , and a = 1� ���2� �2.� Similar closed-form expressions can be found for other cases.
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Additional Material on Constellation Design
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The Fixed-Point-Free Group Types

1. Gm;r: Gm;r = h�; � j �m = 1; �n = �t; �� = �riwhere (m; r) is admissible. The order of Gm;r is L = mn.2. Dm;r;`:Dm;r;` = h�; �; 
 j �m = 1; �n = �t; �� = �r; �
 = �`; �
 = � `; 
2 = �nr0=2i;where nr0 is even, (m; r) is admissible, `2 � 1 mod m, ` � 1 mod n,and ` � �1 mod s, where s is the highest power of 2 dividing mn.The order of Dm;r;` is L = 2mn.
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3. Em;r:Em;r = h�; �; �; 
 j �m = 1; �n = �t; �� = �r; ��m=t = �; 
�m=t = 
;�4 = 1; �2 = 
2; �
 = ��1; �� = 
; 
� = �
i;where (m; r) is admissible, mn is odd, and nr0 is divisible by 3. Theorder of Em;r is 8mn.4. Fm;r;`:Fm;r;` = h�; �; �; 
; � j �m = 1; �n = �t; �� = �r; ��m=t = �;
�m=t = 
; �� = 
; 
� = �
; �4 = 1; �2 = 
2; �
 = ��1;�2 = �2; �� = �`; �� = � `; �� = 
�1; 
� = ��1i;where (m; r) is admissible, mn is odd, r0 is divisible by 3, n is notdivisible by 3, `2 � 1 mod m, ` � 1 mod n, and ` � �1 mod 3. Theorder of Fm;r;` is 16mn.
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5. Jm;r: Jm;r := SL2(F5)�Gm;r;where (m; r) is admissible, gcd(mn; 120) = 1, and SL2(F5) is thegroup of 2� 2-matrices over F5 with determinant 1. SL2(F5) hasthe generators and relationsSL2(F5) = h�; 
 j �2 = 
3 = (�
)5; �4 = 1i:The order of Jm;r is 120mn.6. Km;r;`: Km;r;` = hJm;r; �iwith the relations�2 = �2; �� = (�
)7(
�)2
(
�)2; 
� = 
; �� = �`; �� = � `;where � and 
 are as in Jm;r, and where `2 � 1 mod m,` � 1 mod n. The order of Km;r;` is 240mn.
80


