-~

~

Some Signal Processing, Information-Theoretic,I

‘and Coding-Theoretic Aspects of I
Multi-Antenna Communications.

Babak Hassibi

Mathematics of Communications Research

Bell Laboratories, Lucent Technlogies

April 13, 2000




4 N
‘ General Overview I

Multiple antennas provide many exciting possibilities for high data rate

wireless communications, since they can

e significantly boost channel capacity

e lower the probability of error

of a wireless communications link. (Key: spatial diversity)

Applications abound and include:

e wireless LAN, fixed wireless access, mobile wireless, wireless

Internet, etc.
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/ ‘Why Multiple Antennas?' \

Traditionally, it was believed that there are two ways to increase channel
capacity:

e increase transmit power: C' = log(1 + p)

e increase bandwidth: C = limp_ . Blog(1+ p/B) =p

Neither of which is particularly exciting :(

But what about mutliple antennas? Well, pre-1995:
e fading is bad, scattering environment is bad
e line-of-sight is good

e beam-forming, angle-of-arrival estimation are the way to go

\o capacity grows logarithmically in number of receive antennas
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Things changed around 1995 (Foschini, Telatar)

Now we know better:

e Fading is good! Rich-scattering environment is good!

e Capacity increases [inearly in the minimum of the number of receive

and transmit antennas.

This is now an exciting solution :)
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Research Challenges I

signal processing

information theory

coding theory (space-time codes)

experimental — the propogation environment

— Rayleigh vs. Rician fading, rich-scattering vs. line-of-sight
RF circuits, antenna design

system issues, network issues, multiple access, etc.




/ Outline I \

Will consider the first three different aspects

e Signal Processing:

— an efficient square-root algorithm for Bell Labs Layered
Space-Time (BLAST)

e Information Theory:

— autocapacity — information transmission at Shannon capacity via

coding over a single coherence interval
e Coding Theory:

— multi-antenna signal constellation design via group

representation theory
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Signal Processing I

e an efficient square-root algorithm for Bell Labs Layered
Space-Time (BLAST)
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Basic Model for BLASTI \

e Consider M signals impinging on an array of N (N > M) receivers

via a rich scattering environment.
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e The transmitted signals may come from an array of transmit
antennas (as in BLAST), or from M separate transmit antennas (as
in the uplink of a wireless LAN, etc.).

r=Hs+v.
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/ ‘Basic Idea of BLASTI \

Since maximum-likelihood detection out of the question, Foschini et al
suggested the following three-step procedure:

e Estimate the channel matrix via training sequence
e Find MMSE nulling vectors and optimal detection order

— determine “strongest” signal (the one with the smallest MMSE)
and its corresponding nulling vector

— consider deflated channel matrix and find next “strongest” signal
and nulling vector

— continue
e Process the payload

— 1. MMSE nulling, 2. slicing (decoding), 3. symbol cancellation
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/ Computational Complexity I \

For simplicity, let M = N
e Channel estimation: 2M 2log2LT
¢ Determining the nulling vectors and optimal ordering: 27M* /4

— since we must compute M pseudo-inverses

e Processing the payload: 2M?Lp

To see what these numbers mean for an actual systems, consider a target
of 1 Mb/s data transmission over a 30 kHz wireless channel:

e 1/T = 24.3 ksymbol/sec, 16-QAM

e M=N=14, Ly = 32 and Lp = 100

e Required DSP integrated into a single chip solution

\_ /
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Flops/burst | MegaFlops/s | %
channel estimation 7,840 1.44 0.65
nulling vectors and ordering 1,036,000 190.8 86.3
payload processing 156,800 28.9 13.1
TOTAL 1,200,000 221.2 100

The dominant portion of the computation involves determining the

nulling vectors and optimal ordering. Can this computation be reduced in

a numerically stable way?

N

/
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Have developed an algorithm that

e is cost-efficient: requires only one (implicit) pseudoinverse

computation and has complexity 29M° /3

e is numerically stable: is division-free and uses only unitary

transformations

e is suitable for implemention in fixed-point, rather than floating-point

architectures
Flops/burst | MegaFlops/s | %
channel estimation 7,840 1.44 2.9
nulling vectors and ordering 106,100 19.5 39.1
payload processing 156,800 28.9 58.0
TOTAL 270,400 49.8 100

N

~
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Information Theory I

e autocapacity — information transmission at Shannon capacity

via coding over a single coherence interval
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/ Coding for Fading Channels' \

Consider the single-antenna additive Gaussian noise fading channel:
x = +/psh+w, h~CN(0,1), w~CN(0,1), E|s|* =1

Assume a block-fading model: h is fixed for a “coherence-interval” of T
time samples, after which it changes to an independent value.

e If we code over block sizes of length QT (i.e., over ) coherence
intervals), then Shannon theory asserts that for all rates R < C,

where C' is the Shannon capacity, we can achieve

P.—0 as @ — oc.

e If we code over only one coherence interval (even if T' — o0) we
cannot achieve P. — 0 for any rate R > 0. (Since there is always a
nonzero probability that the channel is “bad”).

e In conclusion, for a fading channel, to achieve Shannon capacity, we

\ need temporal diversity and hence “channel-coding”. /
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4 A

What about multi-antenna fading channels? Assume M transmit and N

receive antennas, and a coherence interval of 1" time samples. Thus:
X =, /ﬁSH LW, EtraceSS* =TM

where H and W are M x N matrix and 7' X N matrices of independent
CN (0, 1) entries, respectively, and S is the T' x M signal matrix.

e Once more, if we code over () coherence intervals, we can achieve
P. — 0, as Q — oo, for all rates less than the Shannon capacity.

e It thus appears that to achieve Shannon capacity we still need to
resort to channel coding. This can be extremely computationally
intensive in the multi-antenna case. (We already have seen how
computationally intensive things can get even without channel
coding — BLAST.)

\_ /
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‘Multi-Antenna Shannon Capacity'

e When H is known to the receiver, the so-called perfect knowledge
Shannon capacity is given by:

H*H
C' = E'logdet (IN —I—p7>

In particular, as M — oo:

C' = Nlog(1 + p)!

~

¢ When M — oo, the assumption that the receiver knows the channel

becomes less and less tenable, since we require longer and longer
training sequences to identify the channel.

e Computing the Shannon capacity in the unknown channel case for
an arbitrary M, N, and T is still an “open problem”. As T — oo,
however, the unknown channel capacity approaches the perfect
knowledge capacity.

/
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/ ‘Coding over One Coherence Interval' \

b, g ' Rayleigh flat-fading channel b,

Codebook| S (TxM) : 1 X (TxN) ™
o b
2> - (X ——=>(X) () : Decoder —>| ®2
" . \&/ .
. (s5ze2 ) 7\/ | 7\/ T | .
b : : b

- R (p/M)]J2 | , MR

H(MxN) W (TxN):

e Hold constant:

— total transmit power, p

— number of receive antennas, N

—38=ZI coherence time
M number of transmit antennas

e Autocoding: does there exists an autocapacity, C,, such that for
all R < Cy, we have P. — 0, as (T, M) — oo, but with Q = 17

\ — will not work if either T or M is fixed /
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N

‘Existence of Autocapacity' \

the autocapacity nonzero?
M e M
T | s, [81 0 msm 0,
{1, P s} o !
- - or| |- |
TI |:SQ:| 10 0 '“|:SQ:]
Q independent 'IL-symboI Q‘I"—wmbol coherence interval;
coherence intervals, QM transmit antennas

M transmit antennas

o P. »0,as Q — 00, VR < C(p, T, M, N).
e Since the block-diagonal signal structure is not necessarily optimal:

Ca(p767N) Z Sup C(,O,T,M,N)

T,M: 4= /
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/ ‘Formula for Autocapacity' \

One can show that the lower bound is, in fact, tight:

Co(p,8,N) = sup C(p,T,M,N)
T,M:%:B

This allows us to explicitly compute the autocapacity as follows
Ca(p757 N) Z C(,O, LT7 LM7 N) Z C(,O, LT7 M7 N)

Letting L — oo, the RHS converges to the perfect knowledge Shannon
capacity. Thus

Cu(p, 3, N) > Elogdet (IN + %H*H)

Further, letting M — oo

Calp, B, N) = Nlog(1 + p)

\_ /
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/ How Many Antennas Do We Need?'

Thus, irrespective of 3, the value of the autocapacity is equal to the
perfect knowledge Shannon capacity. But we do not yet know how

many antennas are required for the autocoding effect to kick in.

e A partial answer to this question can be provided by studying the

random coding exponent, or the so-called cut-off rate:

~

Ro(T,8,N,p(S)) = —%bg [Esl,sz {/dX\/p(X | S1) - p(X | 52)}] ,

that allows us to explicitly bound the probability of error, P.:

P. < exp{-TI2[Ro(T,08,N,p(S)) — R]}.

¢ Remark: This can be obtained using the union bound applied to

the Chernoff bound on the pairwise probability of error.

/
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Bounding the Cut-Off Rate'

Optimizing the cut-off rate over the input density p(S) appears to be

intractable, so we compute it for the input densities:

o [sotropically-distributed unitary matriz: This is capacity-achieving

when the channel is unknown in the high SNR regime.

o (Gaussian matrices with i.1.d. elements: This is capacity-achieving

when the channel is known.

In fact, for the above distributions, in addition to the cut-off rates, we
have also analytically computed the random coding exponent, as well as

the pairwise probability of error.

\_ /
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‘ Random Matrices '

The computation of these quantities requires the (asymptotic) eigenvalue

distribution of various classes of random matrices — several of which
were not known. The techniques involved in determining these

distributions are quite interesting and have connections to

e orthogonal polynomials
e the saddlepoint method
e Wishart matrices
e Hankel operators

e hypergeometric functions

22



Hypergeometric Functions I

“Hypergeometric functions are one of the paradises of nineteenth
century mathematics that remain unknown to mathematicians of
our day. Hypergeometric functions of several variables are an even

better paradise: they will soon crop up in about everything.”

-Gian Carlo Rota

\_ /
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Isotropically-Distributed Unitary Matrix'

An isotropically-distributed n X n unitary matrix ¥ is one whose

probability density function is invariant under pre- or post-multiplication

by any fixed unitary matrix:
p(¥) =p(OY) =p(¥O), VOst. OO0 =0"0=1

In particular, for any unit vector &, the vector W¢ is equally likely to

point in any direction.

e U’ is not isotropically-distributed for n > 3 in the real case and

n > 2 in the complex case

e In the complex case, U¢ for £ > n has independent eigenvalues

\_ /
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with VU Isotropically Unitary

Ye , with W isotropically unitary
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U2e, with U Isotropically Unitary

w2 e, with W isotropically unitary
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S USTM, H unknown

bounds (M — o).

Figure 1: Cutoff rate bounds
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When does Autocoding Kick In?'

S USTM, H known

~

0

10

20 30

(bits/symbol) as a function of M for p=18
dB, 6 = 2, and N = 1. The dashed lines are the asymptotic cutoff rate

Even for small values of M the Ry bounds are close to their asymptotic

\values. Thus autocoding takes effect for relatively small values of M. /

40
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‘Pairwise Probability of Error vs. MI

ol0 R

pairwise P

~

Figure 2: Pairwise probability of error for isotropicaly distributed signal

for N = 4 receive antennas and p = 18db.

/
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Figure 3: Upper bound on block probability of error versus transmission

rate (bits/symbol) for random constellation of Unitary Space-Time signals,

for N =4, p=18 dB, and (T, M) = (2,1), (4,2),(8,4),(16,7).

N

/
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/ ‘Autocoding and Autocapacity — Summary' \

e Autocoding — coding within one block without outage. Perfect
knowledge Shannon capacity can be achieved.

— Kicks in with even relatively small (7', M).
— Temporal diversity not needed — replaced by spatial diversity.

— Shannon capacity for unknown channel not so important.

e Burden is shifted away from channel coding and onto decoding

constellations of matrix-valued signals.

— isotropically-distribued unitary signals are good.

e T =16, M =7, N =4, p=18dB, R=5, P. < 107°. Constellation

size is 2%° = 10%*—yikes!

\o Joint work with T. Marzetta and B. Hochwald.
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Coding Theory I

e multi-antenna signal constellation design via group

representation theory

32




‘Constellation Design for Multiple Antennas.

The preceding discussions suggest that a crucial issue in multi-antenna

communications is the design of good signal constelations.

e One good candidate is a constellation of unitary signals (henceforth

USTM - unitary space-time modulation)

— In the known channel case, we shall take T'= M (8 = 1), so that

the constellation is composed of M x M unitary matrices:

V={Vo,...,.Vo_1}, VoV, =V, Vi=1nm

\_ /
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/ ‘Multiple-Antenna Differential Modulation' \

In the unknown channel case, one can take 0 = 2 and employ a
differential-modulation scheme as follows (Hughes 99, Hochwald and
Sweldens 99):

Si =ViSic1=ViVie1... W

with the same constellation, V), as above. To see why, assume,
momentarily, that there is no additive noise. Then, since the channel is

constant over 1T' = 2M time samples:
Xi=8H=VS_ 1H =V; X; 1

so that we can decode the ¢-th signal V; from X; and X;_;, without
needing to know the channel matrix, H. When there is additive noise,

the maximume-likelihood decoder is given by

A

Vi=arg, min [X; —VeXiallp

\_ /
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The quality of a constellation ) is determined by the probability of error
of mistaking one symbol of V for another. It can be shown that, at high
SNR, the probability of mistaking V, with V,/ is dominantly dependant
on the determinant of V; — V.

e In particular, we shall measure the quality of a constellation V' by

1
Cy == min |det(Ve — Vo))"
2 0<e<e! <L

35



/ ‘ “Fully Diverse” Constellations' \

e Our design problem is thus reduced to the following:

— given M and R, find a set V of L = 2% M x M unitary
matrices, such that the minimum of the absolute value of the

determinant of their pairwise differences is as large as possible.

e We shall call any constellation V with the property that the

determinants of the pairwise differences are all nonzero, fully diverse.

e The reason is the following: For any channel matrix H,
VeH # VyH whenever £ # /('

In other words, there exists no channel H for which any two

elements of V respond identically.

\_ /
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4 N
The Design Problem'

The design problem is especially confounded for the following two

reasons:

e The space of all M x M unitary matrices is very difficult to

parametrize (it is the so-called complex Steifel manifold).

— in particular, there are M? real free parameters in any M x M

complex unitary matrix.

e The objective cost, i.e., the absolute value of a determinant, is not a

norml.

:2MR

Moreover, the size of the problem (we are seeking L signals)

makes an exact solution intractable.

\_ /
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Orthogonal Designs (Tarokh et al, 1998) I \

e Let z and y be complex numbers such that |z|° + |y|* = 1. Then an
orthogonal design is the unitary matrix:

e Orthogonal designs have the property that any linear combination of
them is a matrix with orthogonal columns

e In particular,

r1 —I2 —\Y1 — Y2 *
det(Vl—Vg) = det ( ) = |£B1 — x2|2+|y1 — Y2

|2
y1 —y2  (x1—x2)”

Thus, the design problem reduces to the design of spherical codes on
the 2-dimensional complex (or 4-dimensional real) sphere. This is a

well-studied problem. /
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el2mur/L
el2muz/L
Ve = :
el2mun /L
where u1,...,u) are integers.
e Optimization over ui,...,un yields reasonably good constellations.

‘ Diagonal Constellations I \

e The drawback of orthogonal designs is that they only exist for 2 x 2
matrices in the complex case, and 4 X 4 matrices in the real case.
Thus one cannot use them to construct constellations for an
arbitrary number of antennas.

e To alleviate this, diagonal constellations have been introduced:
_ q ¢

However, much better constellations may be possible since the

diagonal constraint appears to be quite restrictive. /
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/ Constellations from Groups' \

To break the logjam, let us investigate the case where V forms a group

under matrix multiplication.

e This has useful practical implications (especially in the
differential-modulation scheme) since matrix multiplication can be

performed by table look-up.

e The design problem also simplifies somewhat under the group

assumption, since

min  |det(Vy — Vi )|M™M
0<L<e! <L

o=

in  |det(Vy)det (I — vV, v, )"
pcmin_ [det(Ve) det (7 -V, Vir)

o= N = DN =

min |det(/ — V)|ﬁ :
I£Vey

40
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‘ Group Representations I

~

Our constellation construction relies on the following crucial result:

- any finite group, G, has a representation with unitary matrices.

Take, for example, the L-th order cyclic group:

Gr = (o|o”

One representation can be obtained by representing o as e’ 27/L  Other

representations can be obtained by representing o as:

pi2mur/L

pi2muz /L

ej27ruM/L

thch yields the diagonal signal constellations introduced earlier. /
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Fixed-Point-Free Groups I \

Although our aim is to maximize

— L in jdet(T— V)|
CV_§I7I£I\1/HEIV|6(_ )| )

it is at this point not even clear whether, or when, this quantity is

zero for a given group G.

Clearly, ¢y will be nonzero if and only if all the matrices V' # I have

no eigenvalues at unity.

Groups that have representations with this property are referred to
as fized-point-free groups — an eigenvalue at unity implies Vx = x,

for some vector x, i.e., that V has a fixed-point.

Therefore we need to search for fixed-point-free groups.

/
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/ ‘ Z.assenhaus’ Characterization I \

Zassenhaus in 1936 gave an almost complete characterization of

fixed-point-free groups. Here is his result for groups of odd order:

Theorem 1 (Zassenhauss) Let G be a fixed point free group of odd

order L. Then there exist integers m and r such that G is isomorphic to

the group

Gm,r — <0'77' | o = 177'M = O't,’7'0'7'_1 = O'r>,
where
(i) L=mM.

(ii) M is the smallest integer such that v = Imod(m).

(iii) ged(M,t) =1, where t = ik

ged(r—1,m) °

\_ /
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/ All Odd-Order Fixed-Point-Free Groups' \

Using Zassenhaus’ partial characterization, we have been able to show

the following result.

Theorem 2 A finite group G of odd order, L, is fized point free if and

only if it is isomorphic to a group
Gmr={(o,7|0" = L, ™ =o' 1077 = '),
for some integers m and r such that:
(i) L=mM.

(ii) M is the smallest integer such that v = lmod(m).

(iii) ged(M,t) =1, where t = 571y -

(iv) All prime divisors of M divide ged(r — 1, m).
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The Group Representation'

The representation of the group takes the form:

V={A@0)'AT)*|I0<l<m-1,0<k<M-1},

where
o 1 0 --- 0
(ZOT... 3\ (001.”0\
Alo) = L CA(r) =
- o 0 0 --- 1
o 0 Y
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Example, M =3

Let M = 3 and take r = 4 and m = 21. Then we have t = 7, and it can
be verified that conditions (i)-(iv) of the theorem are all satisfied. Thus,

define n = €/2™/?! and set

n 0 0 0 1 0
A= 0 n* 0 , B=] 0 0 1
0 0 n'f n” 0 0

The 63 matrices A*B”*, where 0 < ¢ <20 and 0 < k < 2 form a group
under matrix multiplication and the corresponding (-value can be
computed to be ( = 0.3851. This 3-antenna, 63-element, constellation is

by one element shy of producing a constellation of rate 2.

\_ /
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Go1 4 vs. Diagonal Constellation'

10° ——
107l E N E
F ~
N
N
AN M=3
2 AN N=1
10 3 ~ B E
3 N R=1.99
r N
g — — - Diagonal
g | 9 .
I \
10°F N E
F AN ]
\
10°F N 4
F N
10°° 3 3
10*7 ! ! ! ! ! !
0 5 10 15 20 25 30
SNR (dB)

35

~
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Example, M =9 \

Let M =9. With r =4 and m = 57 all the conditions of the theorem are

satisfied. Thus, if we define n = ¢

[

\

o O O o o o o o 3

0

,'74

o o o o o o O

0
0

7716

o O o o O O

o o O

S
~J

o o o o O

n ©O O O O
0

3

o o o O

2mi/57  and set

0 0 0 0 )

o 0 0 0

0o 0 0 0

0o 0 0 0

o o o0 o |[,B=| s ]
0 0 0 !

o ¥ 0 0

0O 0 7n* 0

0 0 0 )

Qe obtain a 9-antenna, 513-element, constellation (R = 1) with ¢ = 0.36/
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e The classification of even-order fixed-point-free groups is slightly

‘Even-Order Fixed-Point-Free Groups' \

more involved.
In addition to G, », there are five other group types.

One interesting even-order fixed-point-free group is SL2(Fs), group
of 2 X 2 matrices over F5 with determinant unity. This group has
120 elements and can be expressed as

SLa(Fs) = (u,y | w° =7° = (wy)°, " =1).

The representation of its generators is given by
2
1| n—n" n°—1
, Ay) = 7 1 4 3
no—n

/

n—-n® n-n'
n—n* n°—n

274 /5

Ap) = % [

where n = e

49



Pe

10°

10

10

10

M=2, N=2and R =3.45

R=3.45

— — - Orth. des.
— - — Diagonal

Quaternion

0 5 10 15 20 25 30

SNR (dB)

35

50




‘ Beyond Groups I \

Although we have been able to characterize all fixed-point-free
groups, it turns out that such groups are few and far between.

Thus, even though they yield constellations with a very acceptable (,
such groups do not exist for any arbitrary M and any target rate, R.

For example, it is not possible to use our theorem to construct
constellations of “close to” rate 1 for matrix dimensions M = 5 and
M =7, since there exist no fixed-point free group representations for
M =5 and M = 7 matrix dimensions that have “close to” L = 32

and L = 128 elements, respectively.

Thus, to construct constellations for arbitrary M and arbitrary R, it
appears that we need to move beyond the group constructions
considered so far.

The group constructions, nonetheless, suggest structures that may

be used to construct good non-group constellations. /
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/ Performance vs. Diagonal Constellations' \

10°

107 2

10 2

Pe

107

10t

107°

1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18
SNR (dB)

Figure 4: Block-error rate performance for M = 5 transmitter antennas

and rate R = 1. The dashed line is the best diagonal construction. The

\solid line is our best M = 5 construction. /
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Final Remarks I \

We considered the construction of fully diverse USTM signals that
are suitable for known channel, and unknown channel

differential-modulation environments.

We described a construction based on the representation theory of
finite fized-point-free groups.

Unlike earlier orthogonal designs-based methods, our framework
allows for any number of antennas.

The special structure of the constellation allows for efficient
decoding schemes, so that the exhaustive search is not necessary.

For low to moderately high rates, the resulting constellations have
excellent performance. We are currently investigating the
construction of very high rate non-group constellations.

Joint work with A. Shokrollahi, B. Hochwald, and W. Sweldens. /
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4 Summary ) A

Multi-antenna communications has a great potential to increase the
capacity and quality wireless communications. It also presents great
challenges and many interesting problems.

To summarize, let us repeat the outline.

e Signal Processing:

— an efficient square-root algorithm for Bell Labs Layered
Space-Time (BLAST).

e Information Theory:

— autocapacity — information transmission at Shannon capacity via

coding over a single coherence interval.
e Coding Theory:

— multi-antenna signal constellation design via group

\ representation theory. /
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‘ Other Work.

e In the multiple-antenna area:

— determining the optimal amount of training
e Other areas:

— robust estimation and control
— adaptive filtering
— channel equalization (blind and robust)

— neural networks

56



‘Additional Material - Not Covered in Talk'

57




‘Description of Efficient Square-Root Algorithm'
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BLAST Algorithm I \

. Find H} and P = H} (H})*.

. Find the smallest diagonal entry of P and reorder the entries of s so
that the smallest diagonal entry is the last (M-th) one.

. Form the least-mean-squares estimate §); = H l 1T

. Obtain sjs (via slicing) from sy = H;Mac.

. Cancel the effect of s); and consider the reduced-order problem:
T —hysm = HM-DM=1)

where

T

/

. Continue to find HéM_l)T and PM~—1) — HéM_l)T(HéM_l)T)*.
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/ Computational Complexity I \

For simplicity, let M = N.
e Channel estimation: 2M?log, L.

e Determining the nulling vectors and optimal ordering: 27M* /4.

e Processing the payload: IM?Lp.

To see what these numbers mean for actual systems, consider the next
target application for BLAST:

e 1 Mb/s data transmission over a 30 kHz wireless channel.
o 1/T = 24.3 ksymbol/sec, 16-QAM.

o M =N =14, Lt = 32 and Lp = 100.

e Required DSP integrated into a single chip solution.

\_ /
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Flops/burst | MegaFlops/s | %
channel estimation 7,840 1.44 0.65
nulling vectors and ordering 1,036,000 190.8 86.3
payload processing 156,800 28.9 13.1
TOTAL 1,200,000 221.2 100

The dominant portion of the computation involves determining the

nulling vectors and optimal ordering. Can this computation be reduced in

a numerically stable way?

N

/
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‘Ob jectives of the Algorithm.

1. The algorithm must be cost efficient: Is it possible to find gM-ot
and PM=Y from HI and P, without having to “re-solve” the

reduced-order problem all over again?

2. The algorithm must be numerically stable and robust.

e Avoid “squaring” things (forming H* H, for example, is
undesirable). This increases the dynamic range of the quantities
involved, the condition numbers, etc.

e Avoid “inverting” things (inverting (ol + H" H) to obtain P is

undesirable).

e Make as much use as possible of unitary transformations.

\_ /
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/ ‘ QR Decomposition I \

Let us begin with the QR decomposition:

Qo
valy Q2

where @) is an (N + M) x M matrix with orthonormal columns, and R is

= QR = R,

M x M and nonsingular. It can be shown that
P2 =pRr™' H!I = PY2Q7 where PY?P*?=p

Before addressing the question of how to compute P2 and Q., let us

focus on:

1. How to find the smallest diagonal entry of P?

2. How to find the square-root factor of P 1) from P27

KS. How to find the nulling vectors?
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1. Since PY2P*/? = P, the diagonal entries of P are simply the

Answers ' \

squared lengths of the rows of PY/2. Thus: to find the minimum
diagonal entry of P, we need only to find the minimum length row of
pY/2,

Suppose now that we have reordered the entries of s so that the
M-th diagonal entry of P is the smallest. Consider any unitary
transformation 3 that rotates (or reflects) the M-th row of P/? to
lie along the direction of the M-th unit vector. In other words,

M — (M—-1)/2
pl/2y _ pM=n/z - pat=b/ ]

1/2
0 pﬂé

where pl/2 is a scalar. Then PM~V/2 45 o square-root of pWM-1)

; /
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3. Suppose that we have repeated the above steps 1 and 2 until PY/? ig

transformed to an upper triangular matrix. Moreover, let ¢

=,

1 =1,..., M denote the resulting columns of ()., i.e.,

Qa - ga,l T goc,M
Then the nulling vectors for the signals s; to sy are given by:

2 x
HT:p/q :

o, La,i

where p;/ ? denotes the i-th diagonal entry of P/2,

Conclusion: Once P2 and (0. are computed, there is no need to
recompute them for the deflated channel matrix H™ =1 All the

information we need is already in P2 and Qo

But what s the best way to compute PY? and Q. ? (Inverting R to

obtain P? is undesirable.)

\_ /
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‘Summary of Algorithm' \

1. Compute P'/? and Q.

e Propagate the following square-root algorithm:

1 HP/? ro2 0
1/2 o 7 1/2 1/2 __ L _
O P|’I,—]_ @’L - Kp,?, P|Z ’ P|O - \/517 QO - 0
—€; Qi—l A; Qz

where ¢; is the ¢-th unit vector of dimension NV, and ©; is any
unitary transformation that block lower triangularizes the
pre-array. After N steps, we have

pl/? — P|1]\/,2 and Q. = QnN.

2. Find the minimum length row of P*/2 and permute it to be the last

\ (Mth) row. Permute s accordingly. /
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. The nulling vector for the M-th signal is given by pjl\fq

. Find a unitary > such that P/2% is block upper triangular:

0 /

p_?\[

Update Qo to Q2.

Xk

Jye where
) y

q o 18 the M-th row of Q.

_a,

. Go back to step 3, but now with PM~1/2 and Q(aM_l) (the first

M — 1 columns of Q).

The complezity of the algorithm can be shown to be 29M?° /3.
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N

‘ Remarks '

e The above algorithm satisfies our objectives of cost-efficiency:

— we have avoided computing the pseudo-inverse (or QR
decomposition) for each deflated subchannel matrix. This
reduced the computational complexity from 27M*/4 to 29M? /3,
i.e., roughly by a factor of 0.7M.

and numerical stability and robustness:

— we have avoided squaring any of the quantities.

— we have avoided computing inverses (and even scalar divisions)

altogether.

— we have used unitary transformations as much as possible.

/
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But what does all this mean for our example (1 Mb/s, 30 kHz channel,

~

24.3 ksymbol/sec, 16-QAM, M = N = 14, Ly = 32, Lp = 100)? Well,...

Flops/burst | MegaFlops/s | %
channel estimation 7,840 1.44 2.9
nulling vectors and ordering 106,100 19.5 39.1
payload processing 156,800 28.9 58.0
TOTAL 270,400 49.8 100

Thus the total computation has been reduced from 221 MegaFlops/s to

50 MegaFlops/s.

N

/
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‘ Further Remarks I \

The prominent component of the algorithm is the use of unitary
transformations which introduce zeros in prescribed entries of given
row vectors. These can be performed by either using a Householder
reflection, or a sequence of Givens rotations.

In hardware, the sequence of Givens rotations can be implemented
using “division-free” methods, such as the CORDIC method. They
can also be parallelized by means of a systolic-array-type
architecture.

The numerical stability of the algorithm makes it attractive for
implementation in fixed-point, rather than floating-point,
architectures.

Finally, the savings in computational complexity make it possible to

implement the algorithm using a single commercial DSP processor.
Thus, there is no need to design a new chip. /
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‘Further Material Related to Autocapacity.
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/ Matrix Channel with Correlated Entries. \

When the elements of H are correlated the perfect knowledge Shannon
capacity is still given by

C = FE'logdet (IN -+ pHMH> :

If we denote the eigenvalues of HJ\ZH by A1,...,An, then

N N
C=Elog|[(1+p\)=E) log(1+p\)=NElog(l+ p))

i=1 i=1
When the elements of H are uncorrelated A\ — 1 as M — oo and we

obtain C' = N log(1 + p). When H is rank one (corresponding to a single

planar wave line-of-site situation), we have

C =log(1+ Np)

\The general case depends on how “full-rank” H is. /
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/ ‘How Many Antennas?' \

e Answer not given by the autocapacity formulas

e Partial answer can be provided by studying the random coding

exponent

Pe < exp{—QT2[Eo(T,p3,p,p(5)) — nR]}

where

Fo(T, 6, p,p(S)) = 7 log [ /X (s {pﬁ<X|s>})H” dX]

Here () is the number of independent coherence intervals, and R is

the rate of transmission

e We are interested in () = 1, and wish to show that as T' — oo, the

exponent [Eo(T, 3, p,p(S)) — nR] is positive

/
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The Cutoff Rate. \

e Joint optimization over p(S) and p is formidable. Therefore, we
restrict our attention to u = 1, and “judicious” choices of the
density p(S5).

e This leads to
Pe S eXp{_Tln2[RO(T767N7p(S))_R]}a

where

Ro(T,B,N,p(S)) = —%bg [Esl,sz {/dX\/p(X | S1) - p(X | 52)}]

is the so-called cutoff rate.

e Remark: This can also be obtained using the union bound applied

/

to the Chernoff bound on the pairwise probability of error.
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Asymptotic Cutoff Rate'

Suppose H is unknown and that the input signals are chosen as

isotropically-distributed unitary matrices. Then

Jim Ro(T, 3, N,p(5)) = % (min(1, 5 — 1) log(1 + a)+

1_|_ 1 — aaa
610g< 5 s )—I—

15 — 2| log 1++vV1—a
vVi—a+ /11— 1‘fa

2
where o = 4((1pf_)pﬁ), anda=1— (%)2

e Similar closed-form expressions can be found for other cases.

N

)|

~

/
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‘Additional Material on Constellation Design.
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‘The Fixed-Point-Free Group Types'

1. Gt

’

Gmr=(o,7|c™=17"=0"0" =0")

where (m,r) is admissible. The order of G, is L = mn.

2. Doy pope:

Y L

m t . r . R 4 2 nrg/2
Dmyre= (o, 1,v|oc" =1,7"=0,0 =0 ,0 =0, 7 =17,y =71 )

Y

where nrg is even, (m,r) is admissible, /> = 1 mod m, £ = 1 mod n,
and £ = —1 mod s, where s is the highest power of 2 dividing mn.
The order of Dy, ¢ is L = 2mn.

\_ /
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n __ _t T __ T o _ _
=o0,0" =0, p = [,y =1,

pt =107 =% 0 =T wT =, = ),

En, = {(oom,uy|c™ =11

where (m,r) is admissible, mn is odd, and nrg is divisible by 3. The

order of Ey, » is 8mn.

4. Fo ru:

m/t

t T T o _
70 _0-7/’1’ _:U/a

m n
Fore = {omuy,v|lc"=11"=0

=y u =7,y =py,pt=1Lpt =% =pt,

Lrr =7 ="y =put),

,_YO'
V=o' =0
where (m,r) is admissible, mn is odd, 7o is divisible by 3, n is not
divisible by 3, 2 = 1 mod m, £ = 1 mod n, and £ = —1 mod 3. The

order of Fy, ,, is 16mn.

\_ /
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(5 g N

Jm,r = SLQ(?E)) X Gm,ra

where (m,r) is admissible, gcd(mn, 120) = 1, and SL2(Fs) is the
group of 2 x 2-matrices over F5 with determinant 1. SL2(F5) has

the generators and relations

SLa(Fs) = (u,y | w° =7° = (wy)°, p" =1).
The order of J,,  is 120mn.
6. Km,re:
Kma"nag — <Jmar7 V>

with the relations

2 v v l v V4
)

vt =t = () () v (vm)* Y =0 = ot T =

where ;1 and « are as in Jom,r, and where £* = 1 mod m,
¢ =1 mod n. The order of K,, ¢ is 240mn.
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